Innovations in Knee Arthroplasy: State of the art in Surgery and Rehabilitation

Dr. Jason Jennings, MD, PT – Colorado Joint Replacement Dr. Andrew Kittelson, PT, PhD – University of Colorado Anschutz Medical Campus Dr. Jennifer Stevens-Lapsley, PT, PhD – University of Colorado Anschutz Medical Campus Dr. Michael Bade, PT, PhD – University of Colorado Anschutz Medical Campus

Combined Sections Meeting 2019 Washington, DC, January 23-26, 2019

Learning Objectives

- Identify best practice and evidence to support the management of patients after total joint replacement.
- Understand key surgical factors that influence post-operative rehabilitation and how to effectively communicate with your patient's surgical team.
- Leverage health systems data to anticipate patient trajectories of recovery and resource utilization.
- Incorporate clinically effective treatments for some of the most common post-operative complications, including persistent muscle weakness, movement asymmetries, and lower extremity edema

Disclosure

- Dr. Jennings has the following disclosures:
 - Consultation
 - Total Joint Orthopedics
 - Xenex
 - Research support
 - Porter Adventist Hospital
 - DePuy
 - Zimmer
- Drs. Kittelson, Stevens-Lapsley, and Bade have nothing to disclose

What You Need to Know About TKA

Jason M. Jennings, MD, DPT Colorado Joint Replacement Porter Adventist Hospital Denver, Colorado

Adjunct Professor University of Denver Biomedical Department of Engineering

DISCLOSURES

- Consultation
 - Total Joint Orthopedics
 - Xenex
- Research support
 - Porter Adventist Hospital
 - DePuy
 - Zimmer

MY BACKGROUND

- Undergraduate University of Florida
- MPT, DPT University of St. Augustine
- ATC Internship route
- MD University of South Florida
- Residency Duke University Medical Center
- Fellowship Colorado Joint Replacement

MY PHYSICAL THERAPY MENTORS

MY PRACTICE

- Colorado Joint Replacement Denver
 - Hip and knee primary and revision surgery
 - Academic 10-20 publications/year
 - Fellowship 2 per year
 - Mission work Operation Walk (Denver Chapter)

BACKGROUND

 Arthritis is the second most common chronic condition in the US

Healthcare cost - ~82 billion/year

EXPECTED TO INCREASE

Kurtz S., et al. JBJS 2007.

WHAT ARE WE GOING TO TALK ABOUT?

- Preoperative
- Intraoperative
- Postoperative
- Generalizations regarding PT

DOES EVERYONE DO WELL?

Table 3. Comparison of published satisfaction percentages after

 primary total knee replacement

Author	Ν	Followup (years)	Satisfied (%)
Anderson et al. [2]	74	1–5.5	89
Noble et al. [22]	253	1	75
Robertsson et al. [23]	27,372	2-17	82
Wylde et al. [26]	228	2	85
Hawker et al. [12]	1193	2–7	85
Heck et al. [14]	291	2	88
Current study	1703	1	81

Bourne et al. CORR 2010

PATIENT EXPECTATIONS AFFECT SATISFACTION

Satisfaction correlated with

- Age < 60
- Absence of residual symptoms
- Absence of functional impairment
- Fulfillment of expectations
 - WE CAN CONTROL!
- Noble et al. CORR, 2006 (John Insall Award)

PREOPERATIVE EDUCATION

• We currently require all patients to attend a preoperative "joints" class

 We believe patients with very short hospital length of stay may benefit greatly from the education

• There is less one-on-one hospital time with these "fast-track" patients

PREOPERATIVE REHABILITATION

- Systematic Review and Meta-analysis of RCTs
 - Slightly reduces pain in the first 4 weeks (no differences beyond)
 - Slightly improves WOMAC function and 6-8 and 12 weeks
 - Chair, toilet and stair climbing slightly improved early
 - NO difference in length of hospital stay, cost or quality of life
 - Conclusions: effects remain too small and short term to be considered clinically-important
 - Wang et al. BMJ Open 2016.

Ten-year Results Comparing Posterior Cruciate-retaining Versus Posterior Cruciate-substituting Total Knee Arthroplasty

Takashi Sando, MD, PhD, Richard W. McCalden, MD, FRCSC, Robert B. Bourne, MD, FRCSC, Steven J. MacDonald, MD, FRCSC, Lyndsay E. Somerville, PhD

Division of Orthopaedic Surgery, London Health Science Centre, University Campus, London, Ontario, Canada University Hospital, University of Western Ontario, London, Ontario, Canada

TOURNIQUET USE

• Dennis et al. CORR, 2016.

ANESTHESIA

Table 1 Recommendations for e	nhanced recovery after total knee arthroplasty
Patient optimization	
Psychological	Provide additional educational resources and support to patients with depression and anxiety
Anemia	Screen for preoperative anemia and correct before elective TKA, if possible
Diabetes	Monitor HgA1c with a goal of <8; perioperative blood glucose should ideally be kept between 110 and 140 g/dL
Tobacco use	Smoking cessation 4–6 wk before surgery with behavioral support
Malnutrition	Correct malnutrition before surgery; markers indicating malnutrition are total lymphocyte count (TLL) <1500 cells/mm ³ , albumin <3.5 g/dL, and transferrin <200 mg/dL
Preoperative education	
Patient expectations	Managing patient expectations with preoperative and postoperative education has potential benefits with conflicting data in the literature
Intraoperative factors	
Tourniquet use	The authors recommend limiting tourniquet use to decrease quadriceps inhibition after TKA
Blood management	Use of TXA (either intravenous, topical, or oral) reduces blood loss and transfusions after TKA
Perioperative factors	
Anesthetic methods	Neuraxial anesthesia appears to be safer and more effective than general anesthesia in TKA
Regional and local anesthesia	Motor function-sparing adjuvant methods such as ACBs and PAIs can enhance perioperative pain control
Analgesia	Multimodal pain protocols incorporating acetaminophen, nonsteroidal anti inflammatory drugs, gapapentinoids, short-acting corticosteroids with supplemental opioids rather than opioid monotherapy are recommended
Renabilitation	
Physical therapy (PT)	Although there is no consensus on length, duration, or intensity of PT after TKA, the authors' practice is 2–3 outpatient visits per week for 4–6 wk
Preoperative rehabilitation	The authors favor a single preoperative PT visit, especially in those with significant preoperative disability
Cryotherapy	Traditional ice or gel packs for 20–30 min per session are recommended over cryotherapy devices due to the cost and risk of thermal injury
CPM	Use of CPM is reserved for patients who have had a closed manipulation and is not used after primary TKA
Bracing	Dynamic extension bracing is reserved for severe cases of postoperative contracture
Discharge disposition	Use of clinical care coordinators and discussing disposition in advance of surgery are recommended with strong encouragement for discharge to home

• Rutherford R, Jennings JM, Dennis DA. Orthop Clin N Am. 2017

Clin Orthop Relat Res (2011) 469:2874–2880 DOI 10.1007/s11999-011-1874-2

CLINICAL RESEARCH

Tranexamic Acid Reduces Blood Loss and Blood Transfusion after TKA

A Prospective Randomized Controlled Trial

Keerati Charoencholvanich MD, Pichet Siriwattanasakul MD

DRAIN USE

Unpublished data (submitted Bone Joint)

• No differences

- Quadriceps strength
- Quadriceps activation
- Swelling
- Effusion
- Pain
- Complications

POSTOPERATIVE CONSIDERATIONS

Table 4

Table 1 Recommendations for e	nhanced recovery after total knee arthroplasty
Patient optimization	
Psychological	Provide additional educational resources and support to patients with depression and anxiety
Anemia	Screen for preoperative anemia and correct before elective TKA, if possible
Diabetes	Monitor HgA1c with a goal of <8; perioperative blood glucose should ideally be kept between 110 and 140 g/dL
Tobacco use	Smoking cessation 4-6 wk before surgery with behavioral support
Malnutrition	Correct malnutrition before surgery; markers indicating malnutrition are total lymphocyte count (TLL) <1500 cells/mm ³ , albumin <3.5 g/dL, and transferrin <200 mg/dL
Preoperative education	
Patient expectations	Managing patient expectations with preoperative and postoperative education has potential benefits with conflicting data in the literature
Intraoperative factors	
Tourniquet use	The authors recommend limiting tourniquet use to decrease quadriceps inhibition after TKA
Blood management	Use of TXA (either intravenous, topical, or oral) reduces blood loss and transfusions after TKA
Perioperative factors	
Anesthetic methods	Neuraxial anesthesia appears to be safer and more effective than general anesthesia in TKA
Regional and local anesthesia	Motor function-sparing adjuvant methods such as ACBs and PAIs can enhance perioperative pain control
Analgesia	Multimodal pain protocols incorporating acetaminophen, nonsteroidal anti- inflammatory drugs, gapapentinoids, short-acting corticosteroids with supplemental opioids rather than opioid monotherapy are recommended
Rehabilitation	
Physical therapy (PT)	Although there is no consensus on length, duration, or intensity of PT after TKA, the authors' practice is 2–3 outpatient visits per week for 4–6 wk
Preoperative rehabilitation	The authors favor a single preoperative PT visit, especially in those with significant preoperative disability
Cryotherapy	Traditional ice or gel packs for 20-30 min per session are recommended over cryotherapy devices due to the cost and risk of thermal injury
СРМ	Use of CPM is reserved for patients who have had a closed manipulation and is not used after primary TKA
Bracing	Dynamic extension bracing is reserved for severe cases of postoperative contracture
Discharge disposition	Use of clinical care coordinators and discussing disposition in advance of surgery are recommended with strong encouragement for discharge to home

• Rutherford R, Jennings JM, Dennis DA. Orthop Clin N Am. 2017

PATIENTS DO BETTER AT HOME

- Discharge destination comparisons
 - (A) rate of 30 day adverse reactions vs. number of risk factors
 - (B) rate of 30 day unplanned readmissions vs. number or risk factors
 - Keswani et al. JOA 2016

HIP ABDUCTION STRENGTH

Loyd BJ, Jennings JM, et al. Physical Therapy 2017.

DEFORMITY CORRECTION

DEFORMITY CORRECTION

DEFORMITY CORRECTION

AMOUNT OF DEFORMITY CORRECTION

Table 3

Univariate Analysis of Change in Normalized Quadriceps Strength From Baseline to 1 and 6 mo Regressed on Known Covariates and Radiographic Measures.

Predictor Variables	Change in Normalized Quadriceps Strength at 1 mo (Nm/kg)		Change in Normalized Quadriceps Strength at 6 mo (Nm/kg)	
	Beta Coefficient	P Value	Beta Coefficient	P Value
Covariates				
Age	0.014	.0034 ^a	< 0.001	.95
Gender	-0.07	.43	-0.32	.0015 ^a
BMI	-0.03	.0007 ^a	-0.03	.0005 ^a
Quadriceps activation	0.01	<.0001 ^a	0.01	.0031 ^a
Radiographic measures				
MA	0.09	.19	0.08	.41
DFA	-0.25	.0009 ^a	-0.32	.0007 ^a
PFA	-0.03	.67	-0.06	.53
PTA	-0.06	.41	-0.09	.34

BMI, body mass index; DFA, distal femoral angle; MA, mechanical axis; PFA, patellofemoral angle; PTA, proximal tibial angle.

^a Meaningful contributing variables (P < .10) retained for multivariable analysis.

Loyd BJ, Jennings JM, et al. JOA 2017.

RANGE OF MOTION

Preoperative Range = Postoperative Range of Motion

(At least for flexion)

EFFUSION

Clin Orthop Relat Res (2019) 477:134-144 DOI 10.1097/CORR.00000000000459 Clinical Orthopaedics and Related Research®

2018 Knee Society Proceedings

Does an Elastic Compression Bandage Provide Any Benefit After Primary TKA?

Christopher N. Matthews BS, Antonia F. Chen MD, MBA, Tanine Daryoush BA, Richard H. Rothman MD, PhD, Mitchell G. Maltenfort PhD, William J. Hozack MD

Conclusions Applying a compression bandage after TKA did not result in any clinical improvement in limb circumference, ROM, or pain. Based on this study, we believe that applying a compression bandage after TKA neither benefits nor harms the patient. Thus, we no longer use compression dressings for routine primary TKA. *Level of Evidence* Level I, therapeutic study.

ARTICLE

Device or Ice: The Effect of Consistent Cooling Using a Device Compared with Intermittent Cooling Using an Ice Bag after Total Knee Arthroplasty

Michelle Bech, BScN, MN, ACNP, NP(A);^{*} Joanne Moorhen, BScPT;^{*†} Mary Cho, BScOT;^{*} M. Ruth Lavergne, MSc;[‡] Keith Stothers, MD, FRCS(C);^{*} Alison M. Hoens, MSc, BScPT, PG Sports PT^{*†}

		Mean (SE)*	
Outcome	Control (n = 34)	Intervention ($n = 37$)	<i>p</i> -value
Primary outcome			
Pain, NPRS (24-48 h post-op)	3.6 (0.27)	3.8 (0.25)	0.67
Secondary clinical outcomes			
PROM, degrees (48 h postop)	59.8 (3.1)	54.0 (2.4)	0.14
Nausea or vomiting, % yes (24-48 h postop)	15.6	34.3	0.08
Opioid use, mg (24-48 h postop)	42.3 (4.9)	49.9 (5.8)	0.33
Change in Hgb, g/L (24-48 h postop)	-8.8 (1.7)	-7.7 (1.8)	0.68
Change in WOMAC pain	-0.7 (0.23)	-0.4 (0.23)	0.32
Change in WOMAC stiffness	-0.8 (0.23)	-0.3 (0.24)	0.14
Change in WOMAC function	-0.6 (0.21)	-0.6 (.17)	0.95
Length of stay, d	4.8 (0.39)	5.8 (0.64)	0.20
Patient satisfaction			
Patient satisfaction, cm	6.0 (0.70)	8.4 (0.36)	0.002
Patients who recommended "yes," %	63.0	96.9	0.004
Consistency of use			
Average time used during the day, % of participants			< 0.00
None of the time (0%)	14.8	0	
Little bit of the time (25%)	25.9	8.6	
Half the time (50%)	29.6	5.7	
Almost always (75%)	22.2	17.1	
Always (100%)	7.4	68.6	
Average time used at night, % of participants			< 0.00
None of the time (0%)	30.8	6.3	
Little bit of the time (25%)	19.2	3.1	
Half the time (50%)	19.2	3.1	
Almost always (75%)	23.1	18.8	
Always (100%)	7.7	68.8	

*Unless otherwise indicated.

NPRS = Numeric Pain Rating Scale; PROM = passive range of motion; Hgb = hemoglobin; WOMAC = Western Ontario and McMaster University Osteoarthritis Index.

CRYOTHERAPY

• Jennings JM et al, The Knee 2017.

PAIN CONTROL

		The Journal of Arthroplasty xx	x (2017) 1–5				
		Contents lists available at		THE DORNAL OF ARTHROPLASTY			
ELSEVIER	jou	The Journal of Ar					
Original Article Preoper a				Clinical Orthopaedics			
Consumj Joshua C. R	Clin Orthop Relat Res DOI 10.1007/s11999-	s (2015) 473:2402–2412 015-4173-5		and Related Research®	CrossMark		
Chia H. Wu ^a Department of On ^b Department of On	CLINICAL RE	SEARCH	Orth	opaedic Advances			
	Preoperati Morbidity		The	e Opioid Epide hopaedic Surg		ct on	
	Mariano E. Men Brian T. Batema						
				ic Use: A and Kne			sk Factor
				Neal, BS; Kipp A. C Mears, MD, PhD	ryer, MD; Pau	Il K. Edwards,	MD; C. Lowry Barnes, MD

MINIMAL OPIOID PATHWAY

- Pre-operative
 - Tylenol
 - Meloxicam (NSAID)
 - Neurontin (Gabapentin)
 - Decadron (Steroid)

Post-operative

- Tylenol
- Decadron
- Toradol (NSAID)
- Neurontin
- 1st line opioid
 - Tramadol

Clin Orthop Relat Res (2019) 477:104-113 DOI 10.1007/s11999.000000000000292 Clinical Orthopaedics and Related Research®

2018 Knee Society Proceedings

The 2018 Chitranjan S. Ranawat, MD Award: Developing and Implementing a Novel Institutional Guideline Strategy Reduced Postoperative Opioid Prescribing After TKA and THA

Cody C. Wyles MD, Mario Hevesi MD, Eleanor R. Trousdale MD, Daniel S. Ubl MPH, Halena M. Gazelka MD, Elizabeth B. Habermann MPH, PhD, Robert T. Trousdale MD, Mark W. Pagnano MD, Tad M. Mabry MD

Level	Representative conditions	Maximum OME	Tramadol (50 mg)*	Hydrocodone (5 mg) *	Oxycodone (5 mg)*	Hydromorphone (2 mg) *	Oxycodone (5 mg) tramadol (50 mg) *
1	Acute fracture						
	Radiculopathy	100	20	20	15	15	Oxycodone-8
	Carpal tunnel						Tramadol–8
2	Knee scope						
	ACL						Oxycodone-15
	reconstruction						
	Thumb	200	40	40	25	25	Tramadol–20
	reconstruction						
	MTP fusion						
3	Ankle ORIF						
	Shoulder scope						Oxycodone–20
	Wrist fracture ORIF	300	60	60	40	40	Tramadol–30
	Minor spine						
	surgery						
+	THA						a 1 ar
	TKA						Oxycodone-25
	TSA	400	80	80	50	50	Tramadol–40
	Major spine						
	surgery						

*OME conversion factors: tramadol: 0.1 = 50-mg tablet tramadol = 5 OME; hydrocodone: 1.0 = 5-mg tablet hydrocodone = 5 OME; oxycodone: 1.5 = 5-mg tablet oxycodone = 7.5 OME; hydromorphone: 4.0 = 2-mg tablet hydromorphone = 8 OME; OME = oral morphine equivalent (mg); ACL = anterior cruciate ligament; MTP = metatarsal phalangeal; ORIF = open reduction and internal fixation; TSA = total shoulder arthroplasty.

MINIMAL OPIOID PATHWAY

- Home medications
 - Tylenol
 - NSAIDs
 - Neurontin
 - Tramadol 1st line opioid
 - If needed switch to oxycodone or norco
- GOAL = Pain 5 or below at rest
- What about marijuana......

Clin Orthop Relat Res (2018) 0:1-6 DOI 10.1097/CORR.00000000000339 Clinical Orthopaedics and Related Research®

2018 Knee Society Proceedings

Has Self-reported Marijuana Use Changed in Patients Undergoing Total Joint Arthroplasty After the Legalization of Marijuana?

Jason M. Jennings MD, DPT, Michael A. Williams MD, Daniel L. Levy BS, Roseann M. Johnson BA, Catherine L. Eschen BS, Douglas A. Dennis MD

- Pre-legalization 0.8% (4/500)
- Post-legalization 11% (55/500)
- Risk factors for use (self-reporting)
 - Younger age
 - Male gender
 - Current smokers or those who did not report a
 - smoking status
 - History of current substance abuse
 - Medicaid insurance
 - Preoperative narcotic use

OUTCOMES – MJ & TJA

- Primary unilateral TJA
- Retrospective
- Minimum 1 year follow-up
- Exclusion: alcohol, opioid or illicit drug use, tobacco use
- Match
 - Age
 - Gender
 - BMI
 - Insurance type

OUTCOMES TKA

- 71 patients in each cohort (user:nonuser)
- ROM no difference
- KSS no difference
 - Follow-up or overall change
- VR-12 no difference
 - Physical
 - Mental
- No differences in readmissions/reoperations
- Marijuana use does not appear to influence (adverse or beneficial) outcomes in patients undergoing a primary TKA

Jennings et al, AAOS Poster 2019

DOES IT WORK?

	2 Week Follow UP (K	nee Patient)	
	User (Average ± SD) N = 25*	Non-User (Average \pm SD) N = 25*	Statistical Analysis
Pain - Week 1 Average	4.6 ± 1.8	4.0 ± 1.9	p = 0.255
Pain - Week 2 Average	4.2 ± 1.9	3.7 ± 1.4	p = 0.314
Pain @ 2 Week Follow Up	3.1 ± 1.9	2.5 ± 1.5	p = 0.258
Narcotic Usage (Morphine Equivilence) – Week 1 Average	55.9 ± 31.8	55.2 ± 42.4	p = 0.946
Narcotic Usage (Morphine Equivilence) – Week 2 Average	40.7± 26.3	32.9 ± 28.4	p = 0.313

DOES IT WORK?

	6 Week Follow Up (Knee Patient)					
	User (Average ± SD) N = 25*	Non-User (Average ± SD) N = 25*	Statistical Analysis			
Pain (Self-Reported at Visit)	1.7 ± 1.6	1.56 ± 1.9	p = 0.747			
Pain on Knee Score	37.6 ± 12.3	37 ± 11.1	p = 0.857			
Function	73 ± 19.3	79.0 ± 17.3	p = 0.253			
ROM (Ext/Flex)	122.4 ± 10.2	121.9 ± 9.2	p = 0.862			
KSS	157.3 ± 28.0	164.6 ± 21.1	p = 0.305			
VR-12 (MCS)	52.1 ± 9.6	56.5 ± 9.4	p = 0.110			
VR-12 (PCS)	37.2 ± 8.3	34.4 ± 9.7	p = 0.273			

ONLY PROSPECTIVE STUDY

 No differences that we have found in our prospective analysis. Only attempt to study to date in TJA patients

- What is next?
 - Prospective randomized blinded
 - Marinol

WHAT SHOULD YOU DO WITH ABNORMAL FINDINGS?

- Do not ever hesitate to call the surgeon or their team
- Always do the right thing for the patient

WOUND ISSUES

ERYTHEMA

ECCHYMOSIS

ADHESIVE REACTION

WHAT IS HAPPENING WITH PT

- Reimbursement most likely to decrease
- You need more evidence based outcomes

PHYSICAL THERAPY: FREQUENCY & DURATION

- No evidence based guidelines
- Functional testing and ideal target for rehabilitation needs to be established
- We typically suggest 3x/week for 4-6 weeks
- Educate patients to "not depend on your therapist"
 - Patient must work on therapy program t.i.d. on their own

BUNDLED CARE – IT IS HERE

Bundled Payment Initiatives for Medicare and Non-Medicare Total Joint Arthroplasty Patients at a Community Hospital: Bundles in the Real World

James P. Doran, BS^a, Stephen J. Zabinski, MD^b

^a NYU Langone Medical Center, NYU Hospital for Joint Diseases Department of Orthopaedic Surgery, New York, New York ^b Division of Orthopaedic Surgery, Shore Orthopaedic University Associates, Somers Point, New Jersey

Strategies and Tactics for Successful Implementation of Bundled Payments: Bundled Payment for Care Improvement at a Large, Urban, Academic Medical Center

Richard Iorio, MD

Orthopedic Surgery, Department of Orthopedic Surgery, NYULangone Medical Center, Hospital for Joint Diseases, New York, NY

CrossMark

LOOK HOW FAR YOU HAVE COME

	Geomedic	Walldius
Length of immobilization	1 week	4-6 weeks
Begin knee range of motion	Week 1 (average 5-7 days)	Week 4-6
Training in activities of daily living	Week 1 (in cast) Week 2 (cast removed)	Week 1 (in cast) Week 4-6 (cast removed)
Strengthening exercises to knee	Week 2-4	Week 5-7
Begin ambulation, weight bearing to tolerance	Week 2-3	Week 2 (in cylinder cast) Week 6-8 (cast. removed)

Waters. Physical Therapy 1974

SHIFT IN REHABILITATION PROTOCOL "ACCELERATED REHABILITATION"

THE JOURNAL OF BONE & JOINT SURGERY • JBJS.ORG VOLUME 91-A • NUMBER 4 • APRIL 2009

COST-EFFECTIVENESS OF ACCELERATED PERIOPERATIVE CARE/REHABILITATION AFTER HIP/KNEE ARTHROPLASTY

TABLE I Protocols for Standard and Accelerated Interventions for Eighty-seven Patients Treated with Total Hip or Knee Arthroplasty in Denmark from 2005 to 2006

Standard-Protocol Group	Accelerated-Protocol Group
Information given separately to each individual patient on the day of admission	Patients receive information in groups at an outpatient clinic visit prior to hospitalization
Hospitalization on the day before surgery	Hospitalization on the day of surgery
Patients treated with arthroplasty placed randomly among other patients	All patients treated with arthroplasty placed together in one separate part of the ward
Various nurses in charge of care, and various occupational therapists and physiotherapists responsible for mobilization	One nurse in charge of a multidisciplinary team of nurses, occupational therapists, and physiotherapists
Nutrition screening	Nutrition screening and special focus on daily consumption of 1.5 L of fluid, including two protein beverages
Mobilization and exercise started on the first postoperative day	Mobilization and exercise started on the day of surgery
Individual and gradual mobilization according to the patient's tolerance	Intensive mobilization of patients in teams after preset daily goals
Four hours of mobilization daily	Eight hours of mobilization daily
No difference	in operating theater
No difference in pain relief,	nausea control, or bowel regulation

Clin Orthop Relat Res (2019) 477:60-69 DOI 10.1097/CORR.000000000000561

2018 Knee Society Proceedings

Clinical Orthopaedics and Related Research®

2018 John N. Insall Award: Recovery of Knee Flexion With Unsupervised Home Exercise Is Not Inferior to Outpatient Physical Therapy After TKA: A Randomized Trial

Andrew N. Fleischman MD, Meredith P. Crizer BS, Majd Tarabichi MD, Shelby Smith BS, Richard H. Rothman MD, PhD, Jess H. Lonner MD, Antonia F. Chen MD, MBA

Fig. 2 This histogram demonstrates the change in knee flexion from preoperative baseline at 4 to 6 weeks to 6 months.

Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated

In-Home Telerehabilitation Compared with Faceto-Face Rehabilitation After Total Knee Arthroplasty

A Noninferiority Randomized Controlled Trial

Hélène Moffet, PT, PhD, Michel Tousignant, PT, PhD, Sylvie Nadeau, PT, PhD, Chantal Mérette, PhD, Patrick Boissy, PhD, Hélène Corriveau, PT, PhD, François Marquis, MD, François Cabana, MD, Pierre Ranger, MD, Étienne L. Belzile, MD, and Ronald Dimentberg, MD

Investigation performed at the Center for Interdisciplinary Research in Rehabilitation and Social Integration, Québec; the Research Centre on Aging, Sherbrooke; and the Center for Interdisciplinary Research in Rehabilitation of Greater Montréal, Montréal, Québec, Canada

Copyright © 2018 by The Journal of Bone and Joint Surgery, Incorporated

Home-Health-Care Physical Therapy Improves Early Functional Recovery of Medicare Beneficiaries After Total Knee Arthroplasty

Jason R. Falvey, DPT, Michael J. Bade, PhD, Jeri E. Forster, PhD, Robert E. Burke, MD, MS, Jason M. Jennings, MD, Eugene Nuccio, PhD, and Jennifer E. Stevens-Lapsley, PhD

Investigation performed at the University of Colorado, Anschutz Medical Campus, Aurora, Colorado

TABLE II Improvement in ADL Function by PT Utilization				
Mean Improvement in ADL Score (95% Cl) (points)				
PT Utilization	Unadjusted	Adjusted*		
≤5 visits	1.67 (1.62-1.73)	1.91 (1.86-1.96)		
6-9 visits	2.09 (2.06-2.13)†	2.13 (2.09-2.17)†		
10-13 visits	2.34 (2.29-2.39)†	2.22 (2.17-2.27)†		
≥14 visits	2.50 (2.43-2.58)†	2.22 (2.15-2.28)†		

*Adjusted for age, sex, baseline ADL function, non-elective admission, duration of home health care, living alone, CCI, baseline dyspnea, and presence of severe pain. $\dagger P < 0.0001$ compared with low PT utilization.

JOINTS WITH ALTITUDE

OPERATION WALK

OPERATION WALK

THANK YOU

Leveraging Health Systems Data to Anticipate Patient Recovery Trajectories and Shape Resource Utilization

Andrew Kittelson, PT, PhD

Assistant Professor University of Colorado Denver Physical Therapy Program Rehabilitation Science PhD Program

How to help patients understand TKA and recovery

Burden to understand surgery and recovery

Information based on the "average patient"

Burden to understand surgery and recovery

Information based on the "average patient"

No framework for person-centered discussions

Burden to understand surgery and recovery

University of Colorado Denver | Anschutz Medical Campus

The Washington Post

Dr. Eric Topol

Dec. 16, 2016

A doctor with a bad knee runs into one-size-fits-all medicine

"Most people do well with intensive physical therapy, but for me it backfired and set up a vicious cycle of inflammation. I needed a different protocol than the standard one that works for the majority. I needed a protocol for patients with histories and conditions like mine."

University of Colorado Denver | Anschutz Medical Campus

The Washington Post

Dr. Eric Topol

Dec. 16, 2016

A doctor with a bad knee runs into one-size-fits-all medicine

"Most people do well with intensive physical therapy, but for me it backfired and set up a vicious cycle of inflammation. I needed a different protocol than the standard one that works for the majority. I needed a protocol for patients with histories and conditions like mine."

"Personalized Outcome Forecasts"

HSR

Health Services Research

The Role of Outcome Forecasts in Patients' Treatment Decisions— Evidence from a Survey Experiment on Knee Replacement Surgery

Iris Kesternich, Francis G. Caro, Alison S. Gottlieb, Susanne Hoffmann, and Joachim K. Winter

Contributions of Second Opinions, Outcome Forecasts, and Testimonials to Patient Decisions about Knee Replacement Surgery

Susanne Hoffmann Dr. oec. publ., Francis G. Caro, PhD, Alison S. Gottlieb, PhD, Iris Kesternich, Dr. oec. publ., Joachim K. Winter, Dr. rer. pol.

MEDICAL DECISION MAKING/JULY 2014

- Age
- Gender
- BMI

University of Colorado Denver | Anschutz Medical Campus

- Gender
- BMI

- Age
- Gender
- BMI

"When you don't know what is going on or what is causing the pain or what to expect...you don't know if your experience is typical or something is wrong...either I'm not on track or something is wrong"

"Average patient like me has no idea what is coming"

"The patient wants to know, well where do I fall in? I would have loved that"

• Data should support clinical interactions (feedback and feedforward)

Data should support clinical interactions (feedback and feedforward)

Data should support clinical interactions (feedback and feedforward)

- Data should support clinical interactions (feedback and feedforward)
- Address the key "pain points" of patients and providers

- Data should support clinical interactions (feedback and feedforward)
- Address the key "pain points" of patients and providers
- The importance of user-centered design

RESTORE

A collaborative team committed to optimizing movement and quality-of-life in older adults through innovative research and educational excellence

www.movement4everyone.com

Lower Extremity Weakness after TKA

Jennifer Stevens-Lapsley, PT, PhD Professor Director, Rehabilitation Science PhD Program University of Colorado Eastern Colorado Geriatrics Research Education and Clinical Center

University of Colorado Denver | Anschutz Medical Campus

TKA Outcomes: Pain

- 90% of patients have a substantial reduction in their knee pain
- Pain reduction = #1 Benefit of TKA

(Gill 2001, Konig 2002, Huang 2001, Petterson 2009, Ethgen 2004....)

TKA Outcomes

- Range of motion (ROM) at 1 year
 - Flexion: 110-124°
 - Extension:-1-0°

Walsh Phys Ther 1999; Yoshida et al Clin Biomech 2007

Knee ROM limits function only when ROM limited acutely

Outcomes with TKA

Long-term deficits in strength and function compared to healthy adults:

- 40% deficits in quadriceps strength
- 30% deficits in walking distance
- 105% deficit in stair climbing speed

Quadriceps Strength Loss After TKA

* Significantly different from healthy adults (p<0.05)

Bade et al JOSPT, 2010

Stair Climbing Performance After TKA

What should be the focus to improve outcomes?

- Quadriceps strength is directly related to functional performance.
 - Brown et al 1995
 - Connelly et al 1997
- Therefore, quadriceps strength is the focus of much ongoing research.

Clinical Implications

- Activation deficits account for a greater proportion of the postoperative weakness than muscle atrophy. (Mizner 2005)
- Patients with large muscle activation deficits have negligible improvements in force even after intensive rehabilitation. (Hurley 1993)

Clinical Implications

- Muscle activation deficits moderate the relationship between quadriceps strength and physical function with OA.
- Physical function loss
 - Weakness with activation failure
 - Weakness without activation failure Fitzgerald et al. Arthritis Rheum 2004

Mechanisms for Quadriceps Strength Loss

Muscle Force and Activation

University of Colorado Denver | Anschutz Medical Campus

Activation Deficit

Complete Activation

Clinical Activation Battery

3 Tasks (Total Possible Score = 6 points):

Clinical Application

- Two-phase algorithm for patient selection and treatment intended to improve clinical decisions regarding
 - 1) the appropriateness of NMES therapy
 - 2) monitoring of patient progress
 - 3) the timing and rationale for NMES therapy modifications or cessation

Spector et al. JBJS 2016

Recommendations for Quadriceps NMES Therapy

	Treatment Phase 1	Treatment Phase 2			
	Current Characteristics				
Pulse waveform	Symmetrical biphasic rectangular or sinusoidal				
Pulse Duration*	200-300 μs				
Frequency	~ 50 Hz				
Intensity	Highest tolerable				
On:off time	~10:30 s [¥]				
	Treatment session characteristics				
Duration	~10 min/session	~15 min/session			
Number of contractions	~15/session	~22/session			
Frequency	2-3 session/day	4-6 sessions/week			
General Settings (see also Fig 2)					
Electrode number and size	Two rectangular electrodes (e.g. 3x5 inches)				
Electrode position	Over vastus medalis (distal electrode) and vastus lateralis (proximal electrode)				
Knee angle	60-75° of flexion				

Spector et al. JBJS 2016

Fitzgerald Criteria

NMES should evoke a full, sustained, tetanic contraction of the quadriceps with visual or palpable evidence of superior patellar glide.

Clinical Activation Battery

3 Tasks (Total Possible Score = 6 points):

Portable NMES Units

InTENSity Select Combo II

University of Colorado Denver | Anschutz Medical Campus

Repetitive Facilitated Long Arc Quad

Alternative to NMES: Intensive Rehabilitation

Original Article

Early High-Intensity Versus Low-Intensity Rehabilitation after Total Knee Arthroplasty: A Randomized Controlled Trial

Michael Bade PT, PhD , Tamara Struessel PT, DPT, Michael Dayton MD, Jared Foran MD, Raymond Kim MD, Todd Miner MD, Pamela Wolfe MS, Wendy Kohrt PhD, Douglas Dennis MD, Jennifer Stevens-Lapsley PT, PhD

Arthritis Care & Research Vol. 69, No. 9, September 2017, pp 1360–1368

Accepted Articles

Browse Accepted Articles Accepted, unedited articles published online and citable. The final edited and typeset version of record will appear in future.

- RCT of 162 subjects after TKA
 - high-intensity progressive rehabilitation protocol (HI)
 - lower-intensity rehabilitation protocol (LI)

Higher level of exercise progression

High-Intensity Group

Early initiation of an intensive rehabilitation program targeting:

- Lower extremity strength
- Balance
- Agility
- Faster progression to weight-bearing strengthening

Progression: pain, ROM, swelling, & function

University of Colorado Denver | Anschutz Medical Campus

Methods

Participants N = 162 (89 females) 63 ± 7 years of age

Outcome Measures

- pre-op, 1, 2, 3, 6, 12 mos post-op
- 1. Stair climbing test
- 2. Timed-up-and-go
- 3. Five-times sit-to-stand
- 4.6-minute walk
- 5. Quadriceps/Hamstrings strength & activation
- 6. Surgical limb ROM
- 7. WOMAC Index of OA

Lower level of exercise progression

Low-Intensity Group

Standard rehabilitation targeting:

- ROM •
- Stretching
- Moderate resistance • bands
- Moderate-demand • functional exercises

Progression: time-based

2-3x/wk for 12 weeks 25 total visits

Key Differences Between Interventions

Element	High-Intensity Intervention	Low-Intensity Intervention	
Exercise Difficulty & Complexity	Quick Progression to WB Exercise Utilization of Weights (8RM) Higher Level WB Exercises	Initial focus on NWB exercises Slower progression through WB exercises	
Progression	Ability-Based (Progression Criteria)	Time-Based (Tissue Healing)	
Education	Focused on detrimental effects of surgery and that knee replacements are strong and safe to use	Focused on the need to protect the new joint in the early postoperative period to facilitate healing	
Activities	Early prescription of a home walking program with progression to higher level activities	Instructed to minimize activity in the 1 st month to ADLs only with gradual progression in walking program by 3 months	

Progression Criteria:

- Decrease in ability to rise from a chair or walking endurance?
- Any soreness >2 hours following last tx?
- Decrease in AROM by 5°?
- Increase in swelling > 2cm?
- Increase in resting VPRS by 2 points?
- If one criteria is positive maintain current level of provocative exercise/s and advance all others as tolerated...
- If two or more criteria are "yes" decrease tx intensity

High Intensity Exercise Progression (performance-based)

Low-Intensity Exercise Progression (time-based)

[R]

		Time				
	CLINICAL TREATMENT	Phase 1 Surgery – Week 2	Phase 2 Week 3 – Week 4	Phase 3 Week 5– Week 6	Phase 4 Week 7– Week 9	Phase 5 Week 10 – End
	Manual techniques	 Patellar mobilization Distraction Proximal tib/fib as needed PROM (knee/hip) Soft tissue mobilization 	 Patellar mobilization Distraction Proximal tib/fib as needed PROM (knee/hip) Soft tissue mobilization Incision massage (if healed) 	 Patellar mobilization Distraction Proximal tib/fib as needed PROM (knee/hip) Soft tissue mobilization Incision massage (if healed) Manual stretching 	 Patellar mobilization Distraction Proximal tib/fib as needed PROM (knee/hip) Soft tissue mobilization Incision massage (if healed) Manual stretching 	 Patellar mobilization Distraction Proximal tib/fib as needed PROM (knee/hip) Soft tissue mobilization Incision massage (if healed) Manual stretching
	Ther Ex	 Functional training (bed, transfers, stairs) Gait training AD progression Heel slides Glut sets Quad sets Ankle Pumps Mini-squats 	 Warm up on bike with no resistance (5 min) Functional training (stairs) Gait training AD progression Short arc quads Straight leg raises Ankle Pumps Standing hamstring curls Standing weight shifts Mini-squats 	 techniques Warm up on bike with no resistance (5 min) Gait training AD progression Seated theraband hamstring curls (min resistance) Marching Closed chain TKE (min resistance) Sit to stands Bilateral calf raises 	 techniques Warm up on bike with no resistance (5 min) Gait training AD progression Seated theraband hamstring curls (min/mod resistance) Stool scoots fwd/bkwd Single leg stance Balance board stance Closed chain TKE (mod resistance) Bilateral calf raises 	 techniques Warm up on bike with no resistance (5 min) Gait training AD progression Seated theraband hamstring curls (mod/heavy resistance) Stool scoots fwd/bkwd Single leg stance - foam Balance board mini- squats
	Education	 Pain management Swelling control Wound healing Educate on overdoing it in the early phase of rehab and need to decrease swelling first 	 Pain management Swelling control Wound healing Activity counseling 	Activity counseling	Activity counseling	Closed chain TKE Activity counseling (mod/heavy resistance) Bilateral calf raises
University Denver /	Modalities	• None	 Ice after therapy (10-15 min) 	 Ice after therapy (10-15 min) 	 Heat before therapy or Ice after therapy (10-15 min) 	 Heat before therapy or Ice after therapy (10-15 min)

НОМЕ	Time					
EXERCISE PLAN	Phase 1 Surgery – Week 2	Phase 2 Week 3 – Week 4	Phase 3 Week 5– Week 6	Phase 4 Week 7– Week 9	Phase 5 Week 10 – End	
Strength	 2 x 10 reps 2x daily on non-therapy days: Heel slides Glut squeezes Ankle pumps Quad sets 	 2 x 10 reps 2x daily on non-therapy days: Short arc quads Straight leg raises Ankle pumps Clams Standing hamstring curls Standing weight shifts 	 2 x 10 reps 1x daily on non-therapy days: Long arc quads Straight leg raises Standing hamstring curls Marching Bilateral calf raises 	 2 x 10 reps 3x/week on non-therapy days: Seated hamstring curls (min/mod resistance TB) Closed chain TKE (mod resistance TB) Bilateral calf raises Single leg stance 	 2 x 10 reps 3x/week on non-therapy days: Seated hamstring curls (mod/heavy resistance TB) Single leg stance - foam TKE (mod/heavy resistance TB) Bilateral calf raises 	
Stretching	 AROM/AAROM warm- up 30-60 min/day flexion/extension static stretching Self patellar mobilization 	 AROM/AAROM warm- up 30-60 min/day flexion/extension static stretching Self patellar mobilization Daily quad, hamstrings, calf, hip stretching as appropriate 	If needed; discontinued if ROM 0-120 degrees • AROM/AAROM warm- up • 30-60 min/day flexion/extension static stretching • Self patellar mobilization • Daily quad, hamstrings, calf, hip stretching as appropriate	If needed; discontinued if ROM 0-120 degrees • AROM/AAROM warm- up • 30-60 min/day flexion/extension static stretching • Self patellar mobilization • Daily quad, hamstrings, calf, hip stretching as appropriate	If needed; discontinued if ROM 0-120 degrees • AROM/AAROM warm up • 30-60 min/day flexion/extension static stretching • Self patellar mobilization • Daily quad, hamstrings, calf, hip stretching as appropriate	
Activity	 ADLs only, including: Errands Social outings Limited community ambulation 	 ADLs only, including: Errands Social outings Limited community ambulation 	 Up to 10 min of stationary biking (min resistance) or walking if patient does not spend a large amount of time standing during the day 	 Up to 20 min of stationary biking (min resistance) or walking if patient does not spend a large amount of time standing during the day 	 Up to 30 min of stationary biking (min resistance) or walking if patient does not spend a large amount of time standing during the day 	
Modalities	 Ice 3-5x/day with emphasis on elevation 	Ice after HEP	 Ice after HEP and as needed 	Heat/ice as needed	Heat/ice as needed	

Low-Intensity Exercise Progression (time-based)

Results - Safety

- No significant differences in ROM between groups (p>0.05)
- No significant differences in adverse events between groups (p>0.05)

Results - Efficacy

- No significant difference between groups at any time point in functional performance, strength, activation, or WOMAC score (p>0.05).
- Notable variability in both interventions

Comparison with Prior Study Results

Stevens-Lapsley 2012, Stevens-Lapsley 2012

Secondary Analyses

Home exercise compliance differed by group

- HI: 76% compliance
- LI: 83% compliance

Activity compliance

- PASE score did not differ by group over time
- PASE scores should have been different at all time points during the intervention

Early Activation and Recovery

Conclusions

- High-intensity rehabilitation after TKA:
 - Is safe to utilize and does not compromise ROM or safety
 - Decision to utilize this approach should be based on several factors (e.g. patient preference, activation deficits)
 - Both high-intensity and lower-intensity programs were effective in improving functional performance after TKA
- Neither program was more effective in helping individuals with activation deficits recovery as quickly as those without activation deficits

RESTORE

A collaborative team committed to optimizing movement and quality-of-life in older adults through innovative research and educational excellence

www.movement4everyone.com

Movement Pattern Training after Total Knee Arthroplasty

Michael Bade, PT, PhD, OCS, FAAOMPT

Movement Pattern Asymmetry After TKA

Movement Pattern Asymmetry Transitions from Sitting to Standing

Why is Asymmetry Important?

Pearson Correlations with Weight Bearing Ratio * p<0.05

- Movement asymmetry persists in the long-term
- Asymmetry is related to recovery of strength and function

Christiansen 2011

Potential Long-Term Implications

- The "good leg" becomes the "bad leg"
 - Contralateral strength decreases and pain increases
 - Contralateral strength and pain are the main contributors to function at 3 years
- 46% of patients will require a contralateral TKA in 3 years after their initial procedure
- Rates of Contralateral TKA by OA Severity at initial procedure
 - None 5%
 - Mild 20%
 - Moderate 54%
 - Severe -93%

Shao 2013, Mont 1995, Farquhar 2010, Mizner 2005

Predicting Weight Bearing Asymmetry 1 month After TKA

Potential Predictors:

• Strength

- Age
- Sex
- BMI
- Strength Ratios
- ROM
- Pain

Preoperative Weight Bearing

 $WBA_1 = WBA_0 + Quadriceps Ratio + Hamstring Ratio$

- **Preoperative** weight bearing asymmetry is a strong predictor of • postoperative weight bearing asymmetry!
- Postoperative strength loss may also be related to learned disuse ٠

Christiansen 2013

RESEARCH REPORT

CORY L. CHRISTIANSEN, PT. PhD¹ • MICHAEL J. BADE, PT. PhD² • BRADLEY S. DAVIDSON, PhD³ MICHAEL R. DAYTON, MD4 • JENNIFER E. STEVENS-LAPSLEY, PT. PhD3

Effects of Weight-Bearing Biofeedback Training on Functional Movement Patterns Following Total Knee Arthroplasty: A Randomized Controlled Trial

Standard of Care Intervention (both groups)		
Inpatient Stay 3 days	Home PT 2 weeks (6 sessions)	Outpatient PT 4 weeks (6 sessions)
	Weight-bearing Biofeedback (RELOAD group only) 6 weeks (12 sessions)	
TABLE 1 Activities for the Reload Group Using Weight-Bearing Biofeedback		
Activity*	Weight-Bearing Biofeedback Progression Tasks (Games)	
Bilateral stance	Static bilateral stance (ultimate balance challenge) Mediolateral weight shift, basic (penguin slide) Mediolateral lateral weight shift, medium (skiing) Multidirectional weight shift, basic (table tilt) Above progression with foam placed on balance board	
Unilateral stance	Unilateral stance (yoga: standing knee bend or tree pose) Unilateral stance on foam (yoga: standing knee bend or tree pose)	
Sit-to-stand	Self-paced squat (ultimate balance challenge) Static squat (yoga: chair pose) Dynamic squat (strengthening: rowing squat) Above progression with a chair target and gradually increased depth	
Lunging	Static lunge (yoga: warrior pose) Dynamic lunge (strengthening: lunge)	
*Patients were progressed within each activity as able.		

JOSEL ZOTS

Performance on the FTSST and quadriceps strength improved to a greater extent in RELOAD and patients found the RELOAD intervention more motivating than traditional exercise

JOSEPH ZENI, JR., PT, PhD¹ • SUMAYAH ABUJABER, PT, MS¹² • PORTIA FLOWERS, MS¹ FEDERICO POZZI, PT, MA¹ • LYNN SNYDER-MACKLER, PT, ScD, FAPTA¹

Biofeedback to Promote Movement Symmetry After Total Knee Arthroplasty: A Feasibility Study

- Utilized a custom Wii balance board program, SymSlide, verbal/tactile cues, and progressive strengthening
- 2-3x/week for 6-10 weeks
- Led to noted improvements in standing, sit to stand and gait

Limitations of Prior Studies

- Small sample size
- Short intervention period
 - Pronounced asymmetry still present at end of intervention
- Constraints of the Wii System
 - Lack of ability to give feedback during more dynamic activities such as gait and stair climbing
 - Lack of control over feedback schedule and mode of feedback (auditory, tactile, verbal)
 - Games are not rehabilitation specific
 - Score is tracked but not difficulty of task
 - Focus on BMI
 - Rating of 'Unbalanced'
- Lack of incorporation of motor learning principles
- Unknown how this effects contralateral progression

Advances in Biofeedback Devices

Several companies now make commercially available, consumeroriented biofeedback insoles

- RPM²
- Andante Smart Step
- OpenGo Science Moticon
- Novel Loadsol

Novel Loadsol (formerly Pedoped)

- Relative low-cost (\$2500)
- Reusable and Durable
- Thin and flexible (works with orthotics and most shoes)
- Excellent app interface (iOS and Android) patient friendly
- Very accurate (2-5%)
- Good data capture length (limited to device storage)
- Data processing built into the app (easy to use in the clinic and at home)
- Can alter feedback parameters (audio/visual, thresholds)
- Can utilize during dynamic activities and free-living environments
- Can assess real-time response to cuing strategies
- Can detect asymmetries not visual to the naked eye

Loadsol Example

Movement Pattern Biofeedback Training after Total Knee Arthroplasty – NCT03325062

Purpose:

- To determine if the addition of a novel movement pattern training program (MOVE) to contemporary rehabilitation improves movement pattern quality more than contemporary rehabilitation alone
- 2. To determine if MOVE improves long-term physical function and lessens contralateral knee OA progression

Swelling after Total Knee Arthroplasty

Michael Bade, PT, PhD, OCS, FAAOMPT

Joel Carmichael, DC, PhDc

Brian Loyd, DPT, PhD

Why is Swelling Important?

- Major complaint of patients
- Related to the development of complications (DVT)
- Potential mechanism for arthrogenic muscle inhibition (AMI)
- Alters energy availability in muscle and can cause mechanical damage
- Related to pain, ROM, quadriceps strength, and functional performance

Rice and McNair 2010, Loyd in press

How can we measure it clinically?

- Volumetric?
 - Not realistic given wound healing and burden
- Circumferential?
 - Questions regarding reliability and validity
 - Can be confounded due to muscle atrophy and bandaging
- Ultrasound?
 - Questions regarding reliability and operator error
- Bioelectrical Impedance
 - High reliability (ICC > 0.80)
 - Good responsiveness (SEM = 2%)
 - Limitations not joint specific and cost (~\$2000)

Jakobsen 2010, Pichonnaz 2015, Loyd in review

What is "normal" swelling recovery?

- Can peak anywhere from POD1-7
 - Mean swelling 36% increase
- Swelling can persist chronically
 - Mean swelling at POD90 10% above baseline
 - 26% at 3 years have felt swelling in the knee in the last 30 days
- Currently working on the development of personalized reference charts for swelling recovery

Pua 2015, Nam 2016, Loyd in press

Future Directions

- Multimodal Swelling Intervention
 - Use of an adjustable compressive garment
 - Circaid Juxtafit Essentials compression garment (20-50 mm gradient pressure worn during the day)
 - Use of frequent AROM/AAROM
 - 1 min of ankle pumps can increase blood flow for up to 30 minutes
 - Use of manual lymph drainage massage
 - Performed daily at home by patient
 - Effective at pain control
 - Unknown if effective at swelling reduction
- Will also examine the relationship between activity levels and swelling recovery

Funding

Comprehensive Opportunities in Rehabilitation Research Training

A Multi-Center K-12 Career Development Program for Physical and Occupational Therapists

Agency for Healthcare Research and Quality Advancing Excellence in Health Care

Center on Health Services Training and Research

AHRG

Colorado Joint Replacement

Centura Health Physician Group

¢

University of Colorado Hospital
Anschutz Medical Campus
UNIVERSITY OF COLORADO HEALTH

Jason Jennings, MD Todd Miner, MD Doug Dennis, MD Charlie Yang, MD Roseann Johnson Kristin Schank, PT, DPT

Donald Eckhoff, MD Ja Michael Dayton, MD S Craig Hogan, MD C Frank Somoza B Melanie Sandoval, PhD, RN, ACNP

Dawn Waugh, PT, DPT Jackie DelGiorno, PT, DPT Steve Stalzer, PT, SCS, MBA Chuck Thigpen, PT, PhD, ATC Brian Burnikel, MD

Jared Foran, MD

Ruth Nauts, MD Mark Tuttle, MD David Weiner, MD John Gargaro, MD

Physical Therapists

• Brian Loyd, Allison Gustavson, Jennifer Ivey, Jesse Christiansen

• Derick Levy, Kurt Schulze, Michelle Kochanek, Lacy Jennings, Jill Fortney, Susan Geidt, Lucas Armstrong,

• Lisa Bradford, Casey McNitt, Susan Ducklow, Dan Hartman, Lindsay Fairchild

• Karen Backstrom, Marisa Peyerl

 Patrick Kollmyer, Kevin Johnson, Keri Windels, Casey Stoneberger, Mitzy Burden, Brad Walters, Katie Carbiener, Lara Baum

PhD in Rehabilitation Science

What is Rehab Science?

- Interdisciplinary field of study
- Integrates knowledge from basic and clinical sciences
- Goal: to Improve our understanding of human movement, physical function, and disability across the lifespan

The Work We Do

- Clinical rehabilitation trials
- Health services research
- Translational research
- Exercise science research
- Implementation science research

www.rehabsciencephd.com

RESTORE

A collaborative team committed to optimizing movement and quality-of-life in older adults through innovative research and educational excellence

www.movement4everyone.com

