Clinical Practice Guidelines

MICHAEL T. CIBULKA, DPT • NANCY J. BLOOM, DPT • KEELAN R. ENSEKI, PT, MS • CAMERON W. MACDONALD, DPT • JUDITH WOEHRLE, PT, PhD • CHRISTINE M. MCDONOUGH, PT, PhD

Hip Pain and Mobility Deficits—Hip Osteoarthritis: Revision 2017

Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability and Health From the Orthopaedic Section of the American Physical Therapy Association

SUMMARY OF RECOMMENDATIONS ... A2

INTRODUCTION ... A4

METHODS .. A4

CLINICAL GUIDELINES:
Impairment/Function-Based Diagnosis A7

CLINICAL GUIDELINES:
Examination .. A10

CLINICAL GUIDELINES:
Interventions .. A15

AUTHOR/REVIEWER AFFILIATIONS AND CONTACTS A22

REFERENCES .. A23

REVIEWERS: Roy D. Altman, MD • John Dewitt, DPT • Amanda Ferland, DPT
Marcie Harris-Hayes, DPT, MSCI • Elizabeth Hammond, MD • Sandra L. Kaplan, DPT, PhD
Heather Stone Keelty, DPT • David Killoran, PhD • Leslie Torburn, DPT • Douglas M. White, DPT

For author, coordinator, contributor, and reviewer affiliations, see end of text. ©2017 Orthopaedic Section, American Physical Therapy Association (APTA), Inc, and the *Journal of Orthopaedic & Sports Physical Therapy*. The Orthopaedic Section, APTA, Inc, and the *Journal of Orthopaedic & Sports Physical Therapy* consent to the reproduction and distribution of this guideline for educational purposes. Address correspondence to Brenda Johnson, ICF-Based Clinical Practice Guidelines Coordinator, Orthopaedic Section, APTA, Inc, 2920 East Avenue South, Suite 200, La Crosse, WI 54601. E-mail: icf@orthopt.org
Summary of Recommendations*

DIAGNOSIS/CLASSIFICATION
2017 Recommendation

A Clinicians should use the following criteria to classify adults over the age of 50 years into the International Statistical Classification of Diseases and Related Health Problems (ICD) category of coxarthrosis and the associated International Classification of Functioning, Disability and Health (ICF) impairment-based category of hip pain (b28016 Pain in joints) and mobility deficits (b7100 Mobility of a single joint): moderate anterior or lateral hip pain during weight-bearing activities, morning stiffness less than 1 hour in duration after wakening, hip internal rotation range of motion less than 24° or internal rotation and hip flexion 15° less than the nonpainful side, and/or increased hip pain associated with passive hip internal rotation.

DIFFERENTIAL DIAGNOSIS
2017 Recommendation

F Clinicians should revise the diagnosis and change their plan of care, or refer the patient to the appropriate clinician, when the patient's history, reported activity limitations, or impairments of body function and structure are not consistent with those presented in the diagnosis/classification section of this guideline, or when the patient's symptoms are not diminishing with interventions aimed at normalization of the patient's impairments of body function.

EXAMINATION – OUTCOME MEASURES: ACTIVITY LIMITATION/SELF-REPORT MEASURES
2017 Recommendation

A Clinicians should use validated outcome measures that include domains of hip pain, body function impairment, activity limitation, and participation restriction to assess outcomes of treatment of hip osteoarthritis.

Measures to assess hip pain may include the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale, Brief Pain Inventory (BPI), pressure pain threshold (PPT), and pain visual analog scale (VAS).

Activity limitation and participation restriction outcome measures may include the WOMAC physical function subscale, the Hip disability and Osteoarthritis Outcome Score (HOOS), Lower Extremity Functional Scale (LEFS), and Harris Hip Score (HHS).

EXAMINATION – ACTIVITY LIMITATION/PHYSICAL PERFORMANCE MEASURES
2017 Recommendation

A To assess activity limitation, participation restrictions, and changes in the patient's level of function over the episode of care, clinicians should utilize reliable and valid physical performance measures, such as the 6-minute walk test, 30-second chair stand, stair measure, timed up-and-go test, self-paced walk, timed single-leg stance, 4-square step test, and step test.

A Clinicians should measure balance performance and activities that predict the risk of falls in adults with hip osteoarthritis, especially those with decreased physical function or a high risk of falls because of past history. Recommended balance tests for patients with osteoarthritis include the Berg Balance Scale, 4-square step test, and timed single-leg stance test.

F Clinicians should use published recommendations from the Academy of Geriatric Physical Therapy of the American Physical Therapy Association to guide fall risk management in patients with hip osteoarthritis to assess and manage fall risk.

EXAMINATION – PHYSICAL IMPAIRMENT MEASURES
2017 Recommendation

A When examining a patient with hip pain/hip osteoarthritis over an episode of care, clinicians should document the flexion, abduction, and external rotation (FABER or Patrick's) test and passive hip range of motion and hip muscle strength, including internal rotation, external rotation, flexion, extension, abduction, and adduction.

INTERVENTIONS – PATIENT EDUCATION
2017 Recommendation

B Clinicians should provide patient education combined with exercise and/or manual therapy. Education should include teaching activity modification, exercise, supporting weight reduction when overweight, and methods of unloading the arthritic joints.

INTERVENTIONS – FUNCTIONAL, GAIT, AND BALANCE TRAINING
2017 Recommendation

C Clinicians should provide impairment-based functional, gait, and balance training, including the proper use of assistive devices (canes, crutches, walkers), to patients with hip osteoarthritis and activity limitations, balance impairment, and/or gait limitations when associated problems are observed and documented during the history or physical assessment of the patient.

C Clinicians should individualize prescription of therapeutic activities based on the patient's values, daily life participation, and functional activity needs.

INTERVENTIONS – MANUAL THERAPY
2017 Recommendation

A Clinicians should use manual therapy for patients with mild to moderate hip osteoarthritis and impairment of joint mobility, flexibility, and/or pain. Manual therapy may include thrust, nonthrust, and soft tissue mobilization. Doses and duration may range from 1 to 3 times per week over 6 to 12 weeks in patients with mild to moderate hip osteoarthritis. As hip motion improves, clinicians should add exercises including stretching and strengthening to augment and sustain gains in the patient’s range of motion, flexibility, and strength.
Summary of Recommendations* (continued)

INTERVENTIONS – FLEXIBILITY, STRENGTHENING, AND ENDURANCE EXERCISES
2017 Recommendation

A Clinicians should use individualized flexibility, strengthening, and endurance exercises to address impairments in hip range of motion, specific muscle weaknesses, and limited thigh (hip) muscle flexibility. For group-based exercise programs, effort should be made to tailor exercises to address patients’ most relevant physical impairments. Dosage and duration of treatment for effect should range from 1 to 5 times per week over 6 to 12 weeks in patients with mild to moderate hip osteoarthritis.

INTERVENTIONS – MODALITIES
2017 Recommendation

B Clinicians may use ultrasound (1 MHz; 1 W/cm² for 5 minutes each to the anterior, lateral, and posterior hip for a total of 10 treatments over a 2-week period) in addition to exercise and hot packs in the short-term management of pain and activity limitation in individuals with hip osteoarthritis.

INTERVENTIONS – BRACING
2017 Recommendation

F Clinicians should not use bracing as a first line of treatment. A brace may be used after exercise or manual therapies are unsuccessful in improving participation in activities that require turning/pivoting for patients with mild to moderate hip osteoarthritis, especially in those with bilateral hip osteoarthritis.

INTERVENTIONS – WEIGHT LOSS
2017 Recommendation

C In addition to providing exercise intervention, clinicians should collaborate with physicians, nutritionists, or dietitians to support weight reduction in individuals with hip osteoarthritis who are overweight or obese.

*These recommendations and clinical practice guidelines are based on the scientific literature published prior to April 2016. Please refer to our previously published guidelines on “Hip Pain and Mobility Deficits – Hip Osteoarthritis” for literature reviewed prior to 2009.

List of Abbreviations

ACR: American College of Rheumatology
APTA: American Physical Therapy Association
BMI: body mass index
BPI: Brief Pain Inventory
CI: confidence interval
CPG: clinical practice guideline
ER: external rotator or rotation
FABER: flexion, abduction, and external rotation
GREES: Group for the Respect of Ethics and Excellence in Science
HHD: handheld dynamometer
HHS: Harris Hip Score
HOOS: Hip disability and Osteoarthritis Outcome Score
ICC: intraclass correlation coefficient
ICD: International Classification of Diseases and Related Health Problems
ICF: International Classification of Functioning, Disability and Health
IR: internal rotator or rotation
ISS: ischial spine sign
JOSPT: Journal of Orthopaedic & Sports Physical Therapy
KL: Kellgren-Lawrence radiographic score
LEFS: Lower Extremity Functional Scale
LISH: Lequesne Index of Severity for Osteoarthritis of the Hip
MCID: minimal clinically important difference
MDC: minimal detectable change
MRI: magnetic resonance imaging
NSAID: nonsteroidal anti-inflammatory drug
OA: osteoarthritis
OR: odds ratio
PPT: pressure pain threshold
QOL: quality of life
RCT: randomized clinical trial
ROM: range of motion
RR: risk ratio
SCFE: slipped capital femoral epiphysis
SD: standard deviation
SEM: standard error of the measurement
SF-36: Medical Outcomes Study 36-Item Short-Form Health Survey
THA: total hip arthroplasty
TUG: timed up-and-go test
VAS: visual analog scale
WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index
AIM OF THE GUIDELINES

The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based clinical practice guidelines (CPGs) for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization’s International Classification of Functioning, Disability and Health (ICF).

The purposes of these clinical guidelines are to:

- Describe evidence-based physical therapy practice, including diagnosis, prognosis, intervention, and assessment of outcomes for musculoskeletal disorders commonly managed by orthopaedic physical therapists
- Classify and define common musculoskeletal conditions using the World Health Organization’s terminology related to impairments of body function and body structure, activity limitations, and participation restrictions
- Identify interventions supported by current best evidence to address impairments of body function and structure, activity limitations, and participation restrictions associated with common musculoskeletal conditions
- Identify appropriate outcome measures to assess changes resulting from physical therapy interventions in body function and structure as well as in activity and participation of these individuals
- Provide a description to policy makers, using internationally accepted terminology, of the practice of orthopaedic physical therapists

STATEMENT OF INTENT

These guidelines are not intended to be construed or to serve as a standard of medical care. Standards of care are determined on the basis of all clinical data available for an individual patient and are subject to change as scientific knowledge and technology advance and patterns of care evolve. These parameters of practice should be considered guidelines only. Adherence to them will not ensure a successful outcome in every patient, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgment regarding a particular clinical procedure or treatment plan must be made based on clinician experience and expertise in light of the clinical presentation of the patient, the available evidence, available diagnostic and treatment options, and the patient’s values, expectations, and preferences. However, we suggest that significant departures from accepted guidelines should be documented in the patient’s medical records at the time the relevant clinical decision is made.

Methods

Content experts were appointed by the Orthopaedic Section of the APTA to conduct a review of the literature and to develop an updated hip osteoarthritis (OA) CPG as indicated by the current state of the evidence in the field. The aims of the revision were to provide a concise summary of the evidence since publication in 2009 of the original guidelines, and to develop new recommendations or revise previously published recommendations to support evidence-based practice. The authors of this guideline revision worked with research librarians with expertise in systematic review to perform a systematic search for hip OA articles published since 2008 related to classification, examination, and intervention strategies, consistent with previous guideline development methods related to ICF classification. Briefly, the following databases were searched from 2008 to 2016: MEDLINE (PubMed; 2008-2016), CINAHL (EBSCO; 2008-date), PEDro (EBSCO; 2008-date), and the Cochrane Library (Wiley; 2008-date). See APPENDIX A for full search strategies and APPENDIX B for search dates and results (available at www.orthopt.org).

The authors declared relationships and developed a conflict management plan, which included submitting a conflict-of-interest form to the Orthopaedic Section of the APTA. Articles that were authored by a reviewer were assigned to an alternate reviewer. Funding was provided to the CPG development team for travel and expenses for CPG development training. The CPG development team maintained editorial independence.
Methods (continued)

Articles contributing to recommendations were reviewed based on specified inclusion and exclusion criteria, with the goal of identifying evidence relevant to physical therapist clinical decision making for adults with hip OA. The title and abstract of each article were reviewed independently by 2 members of the CPG development team for inclusion. See APPENDIX C for inclusion and exclusion criteria (available at www.orthopt.org). Full-text review was then similarly conducted to obtain the final set of articles for contribution to recommendations. The team leader (M.T.C.) provided the final decision for discrepancies that were not resolved by the review team. See APPENDIX D for a flow chart of articles and APPENDIX E for articles included in recommendations by topic (available at www.orthopt.org). For selected relevant topics that were not appropriate for the development of recommendations, such as incidence and imaging, articles were gathered, reviewed, and synthesized but were not subject to a formal systematic review process and were not included in the flow chart. Evidence tables for this CPG are available on the Clinical Practice Guidelines page of the Orthopaedic Section of the APTA website (www.orthopt.org).

This guideline was issued in 2017 based on the published literature up to 2016. This guideline will be considered for review in 2021, or sooner if new evidence becomes available. Any updates to the guideline in the interim period will be noted on the Orthopaedic Section of the APTA website (www.orthopt.org).

LEVELS OF EVIDENCE

Individual clinical research articles were graded according to criteria adapted from the Centre for Evidence-based Medicine (Oxford, UK) for diagnostic, prospective, and therapeutic studies.

In teams of 2, each reviewer independently assigned a level of evidence and evaluated the quality of each article using a critical appraisal tool. See APPENDICES F and G (available at www.orthopt.org) for a levels of evidence table and details on procedures used for assigning levels of evidence. The evidence update was organized from highest level of evidence to lowest level. An abbreviated version of the grading system is provided below.

<table>
<thead>
<tr>
<th>GRADES OF RECOMMENDATION</th>
<th>STRENGTH OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong evidence</td>
</tr>
<tr>
<td></td>
<td>A preponderance of level I and/or level II studies support the recommendation. This must include at least 1 level I study</td>
</tr>
<tr>
<td>B</td>
<td>Moderate evidence</td>
</tr>
<tr>
<td></td>
<td>A single high-quality randomized controlled trial or a preponderance of level II studies support the recommendation</td>
</tr>
<tr>
<td>C</td>
<td>Weak evidence</td>
</tr>
<tr>
<td></td>
<td>A single level II study or a preponderance of level III and IV studies, including statements of consensus by content experts, support the recommendation</td>
</tr>
<tr>
<td>D</td>
<td>Conflicting evidence</td>
</tr>
<tr>
<td></td>
<td>Higher-quality studies conducted on this topic disagree with respect to their conclusions. The recommendation is based on these conflicting studies</td>
</tr>
<tr>
<td>E</td>
<td>Theoretical/foundational evidence</td>
</tr>
<tr>
<td></td>
<td>A preponderance of evidence from animal or cadaver studies, from conceptual models/principles, or from basic science/bench research supports this conclusion</td>
</tr>
<tr>
<td>F</td>
<td>Expert opinion</td>
</tr>
<tr>
<td></td>
<td>Best practice based on the clinical experience of the guidelines development team</td>
</tr>
</tbody>
</table>

GUIDE:"
tors, clinical educators, physician specialists, and researchers, also reviewed the guideline. All comments, suggestions, and feedback from the expert reviewers, the public, and consumer/patient representatives were provided to the authors and editors for consideration and revisions. Guideline-development methods, policies, and implementation processes are reviewed at least yearly by the Orthopaedic Section of the APTA’s ICF-based Clinical Practice Guideline Advisory Panel, including consumer/patient representatives, external stakeholders, and experts in physical therapy practice guideline methodology.

DISSEMINATION AND IMPLEMENTATION TOOLS
In addition to publishing these guidelines in the *Journal of Orthopaedic & Sports Physical Therapy* (JOSPT), these guidelines will be posted on CPG areas of both the JOSPT and Orthopaedic Section of the APTA websites, which are free-access website areas, and submitted to be available as free access on the Agency for Healthcare Research and Quality website (www.guideline.gov). The implementation tools planned to be available for patients, clinicians, educators, payers, policy makers, and researchers, and the associated implementation strategies, are:

<table>
<thead>
<tr>
<th>TOOL</th>
<th>STRATEGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Perspectives for Patients” and/or “Perspectives for Practice”</td>
<td>Patient-oriented guideline summary available on www.jospt.org and www.orthopt.org</td>
</tr>
<tr>
<td>Mobile app of guideline-based exercises for patients/clients and health care practitioners</td>
<td>Marketing and distribution of app using www.orthopt.org and www.jospt.org</td>
</tr>
<tr>
<td>Clinician’s quick-reference guide</td>
<td>Summary of guideline recommendations available on www.orthopt.org</td>
</tr>
<tr>
<td>Read-for-credit continuing education units</td>
<td>Continuing education units available for physical therapists and athletic trainers through JOSPT</td>
</tr>
<tr>
<td>Webinars: educational offering for health care practitioners</td>
<td>Guideline-based instruction available for practitioners on www.orthopt.org</td>
</tr>
<tr>
<td>Mobile and web-based app of guideline for training of health care practitioners</td>
<td>Marketing and distribution of app using www.orthopt.org and www.jospt.org</td>
</tr>
<tr>
<td>Physical Therapy National Outcomes Data Registry</td>
<td>Support the ongoing usage of data registry for common musculoskeletal conditions of the hip</td>
</tr>
<tr>
<td>Logical Observation Identifiers Names and Codes mapping</td>
<td>Publication of minimal data sets and their corresponding Logical Observation Identifiers Names and Codes for the hip region on www.orthopt.org</td>
</tr>
</tbody>
</table>

CLASSIFICATION
The primary International Classification of Diseases 10th Revision (ICD-10) code and condition associated with hip pain and mobility deficits is **M16.1 Primary coxarthrosis, unilateral**. In the ICD, the term OA is used as a synonym for arthrosis or osteoarthritis. Other, secondary codes associated with hip OA are **M16.0 Primary coxarthrosis, bilateral; M16.2 Coxarthrosis resulting from dysplasia, bilateral; M16.3 Dysplastic coxarthrosis, unilateral; M16.4 Post-traumatic coxarthrosis, bilateral; M16.5 Posttraumatic coxarthrosis, unilateral; M16.7 Secondary coxarthrosis, not otherwise specified; M25.65 Stiffness in hip; and M25.55 Pain in hip**.

The primary ICF body function codes associated with the above-noted primary ICD-10 conditions are the sensory functions related to pain and the movement-related functions related to joint mobility. These body function codes are **b2816 Pain in joints** and **b7100 Mobility of a single joint**.

The primary ICF body structure codes associated with hip pain and mobility deficits are **s75001 Hip joint, s7402 Muscles of the pelvic region, and s7403 Ligaments and fascia of the pelvic region**.

The primary ICF activities and participation codes associated with hip pain and mobility deficits are: **d4154 Maintaining a standing position, d4500 Walking short distances, and d4501 Walking long distances**.

A comprehensive list of codes was published in the previous guideline.**

ORGANIZATION OF THE GUIDELINE
For each topic, the summary recommendation and grade of evidence from the 2009 guideline are presented, followed by a synthesis of the recent literature with the corresponding evidence levels. Each topic concludes with the 2017 summary recommendation and its updated grade of evidence.
Hip Pain, Mobility Deficits, Osteoarthritis: Clinical Practice Guidelines Revision 2017

CLINICAL GUIDELINES

Impairment/Function-Based Diagnosis

PREVALENCE

2009 Summary
Hip pain associated with OA is the most common cause of hip pain in older adults. Prevalence studies have shown that the rates for adult hip OA range from 0.4% to 27%.

EVIDENCE UPDATE

In a systematic review assessing age- and sex-specific epidemiological data for hip and knee OA, the global age-standardized prevalence of hip OA was 0.85% (95% confidence interval [CI]: 0.74%, 1.02%). Prevalence was higher for females than males.19 In a case-control study examining the prevalence of hip OA among 978 individuals in the United States, the prevalence was estimated at 19.6% (95% CI: 16.7%, 23.0%). Men showed a higher prevalence of radiographic hip OA. No difference in symptomatic hip OA prevalence was observed between men and women.39 In a study examining the prevalence of OA in 7126 residents of rural China, the prevalence of symptomatic hip OA was estimated at 0.6%.77

2017 Summary
Osteoarthritis is the most common cause of hip pain in older adults (older than 50 years of age). Prevalence rates for adult hip OA range from 0.4% to 27%. The reported prevalence of hip OA continues to show great variability, with men showing higher prevalence of radiographic hip OA.

PATHOANATOMIC FEATURES

2009 Summary
Clinicians should assess for impairments in mobility of the hip joint and the strength of the surrounding muscles, especially the hip abductor muscles, when a patient presents with hip pain.

EVIDENCE UPDATE

Acetabular retroversion is associated with the development of hip OA.42 External rotation (ER) of the hemi-pelvis is often noted with acetabular retroversion and can be identified on radiographs by noting a protrusion of the ischial spine into the pelvis on that side, called the ischial spine sign (ISS).32,36,66

IV
Cartilage defects and bone marrow lesions in the anterior and central superolateral regions of the joint may represent early structural damage in the development of hip OA. Patients with hip OA also have less femoral-head cartilage volume and a higher prevalence of cartilage defects and bone marrow lesions.67

2017 Summary
Early articular changes observed on imaging may help identify individuals who have not been clinically diagnosed with hip OA. In patients with hip pain, there is some evidence that the presence of acetabular retroversion is related to the development of hip OA.

CLINICAL COURSE

Evidence Update

French et al.,23 in a secondary analysis of 131 patients meeting the American College of Rheumatology (ACR) criteria for hip OA, were unable to identify variables that predicted treatment success for patients with hip OA. Independent variables included age, sex, body mass index (BMI), duration of symptoms, comorbidities, treatment adherence, baseline pain with activity, baseline Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale score, baseline Hospital Anxiety and Depression Scale score, baseline aggregate range of motion (ROM), and treatment adherence.

2009 and 2017 Summary
Total hip arthroplasty (THA) is the most common surgical procedure for end-stage hip OA. Despite the success of THA and knee arthroplasty over the last 3 decades, consensus on criteria for the timing of surgery has not been established. However, the Group for the Respect of Ethics and Excellence in Science (GREES) suggests that nonsurgical intervention has failed if a patient has not experienced a reduction in symptoms, such as a 20% to 25% improvement on the WOMAC pain subscale, and has progressive loss of joint space of between 0.3 and 0.7 mm per year. The rate of hip OA progression varies from patient to patient, thus therapists should monitor the clinical course of hip OA (ROM and strength) and baseline hip pain, Kellgren-Lawrence (KL) grades, joint space width, and outcome score.75
RISK FACTORS

2009 Recommendation

Clinicians should consider age, hip developmental disorders, and previous hip joint injury as risk factors for hip OA.

EVIDENCE UPDATE

In hip OA, lower range of hip internal rotation (IR) and hip flexion is associated with hip osteophytes, morning stiffness, male sex, higher BMI, and hip pain. An increase in BMI is related to increased risk of hip OA of similar magnitude for men and women (risk ratio [RR] = 1.11; 95% CI: 1.07, 1.16).

Living in a community with a high poverty level is independently associated with radiographic OA in 1 or both hips. Low education attainment is independently associated with symptomatic OA of 1 or both hips (odds ratio [OR] = 1.44). People with high bone mass and hip OA have a higher prevalence of osteophytosis and excessive bone formation than those with less bone mass (osteophytosis OR = 2.12; 95% CI: 1.61, 2.79 and subchondral sclerosis OR = 2.78; 95% CI: 1.49, 5.18). A genetic predisposition to end-stage hip OA exhibited an increased level of clinical OA signs in some individuals.

2017 Summary

Age, history of hip developmental disorders, previous hip joint injury, reduced hip ROM (especially hip IR), presence of osteophytes, lower socioeconomic status, higher bone mass, and higher BMI are risk factors for developing hip OA.

NATURAL HISTORY

2009 Summary

The natural history of hip OA is not completely understood. Many different factors contribute to this. Arthritic changes occurring both inside and outside of the hip joint result in loss of joint space and the development of osteophytes, subchondral sclerosis, and cysts. Joint ROM is reduced and muscle weakness develops around the joint with OA progression.

2017 Summary

The natural history of hip OA is not completely understood. Arthritic changes occur both inside and outside of the hip joint, resulting in loss of joint space, development of osteophytes, and subchondral sclerosis and cysts. Joint ROM is reduced and muscle weakness develops around the joint with a progression of OA. Degenerative hip changes develop more frequently in those with developmental dysplasia as compared to those with structurally normal hips. Those with cam deformities develop hip OA more rapidly. Cam deformities that develop after SCFE are related to the development of early hip OA.

EVIDENCE UPDATE

Degenerative hip changes occur most rapidly in those with developmental dysplasia of the hip. Cam deformities and acetabular dysplasia are associated with developing hip OA more rapidly. The extent of cam deformity is related to the presence of hip OA in early adulthood; in 121 patients with stable slipped capital femoral epiphysis (SCFE), 96 had signs of femoroacetabular impingement (FAI) and all 121 had some radiographic signs of hip OA.

2017 Summary

Using the ACR definition of clinical hip OA, the criteria for hip IR should be revised from less than 15° to less than 24°. Patients with hip pain often do not have radiographic evidence of hip OA (eg, osteophytes, joint space narrowing, etc), and many people with radiographic evidence of hip OA do not have hip pain.

2017 Recommendation

Clinicians should use the following criteria to classify adults over the age of 50 years into the International Statistical Classification of Diseases and Related Health Problems (ICD) category of unilateral coxarthrosis and the associated International Classification of Functioning, Disability and Health (ICF) impairment-based category of hip pain (Pain in joints) and mobility deficits (Mobility of a single joint): moderate anterior or lateral hip pain during weight-bearing activities, morning stiffness less than 1 hour in duration after wakening, hip internal rotation range of motion less than 24° or internal rotation and hip flexion 15° less than the nonpainful side, and/or increased hip pain associated with passive hip internal rotation.
DIFFERENTIAL DIAGNOSIS
2009 and 2017 Recommendation
Clinicians should revise the diagnosis and change their plan of care, or refer the patient to the appropriate clinician, when the patient’s history, reported activity limitations, or impairments of body function and structure are not consistent with those presented in the diagnosis/classification section of this guideline, or when the patient’s symptoms are not diminishing with interventions aimed at normalization of the patient’s impairments of body function.

IMAGING STUDIES
2009 and 2017 Summary
Plain-film radiography is the most often used method when radiographically diagnosing and assessing the progression of hip OA. Radiographs are used to look for the amount of joint space narrowing, the presence of osteophytes, and subchondral sclerosis or cysts. Research on imaging methods, using magnetic resonance imaging (MRI) and ultrasound, that can identify prearthritic changes is still under way. Much of the imaging research has looked at how hip dysplasia or FAI may predispose hips to OA; however, results to date are not conclusive.
Clinicians should use validated outcome measures, such as the WOMAC, the Lower Extremity Functional Scale (LEFS), and the Harris Hip Score (HHS), before and after interventions intended to alleviate impairments of body function and structure, activity limitations, and participation restrictions associated with hip OA.

Evidence Update

Adults with hip OA have decreased physical function that can affect balance. In a prospective study of 79 individuals with hip OA, falls efficacy (individuals’ belief in their ability and skill to successfully perform a task and avoid a fall) was measured using 2 questionnaires, and the results showed that falls efficacy independently predicted balance performance as measured by the last 9 items of the Berg Balance Scale.5

The 40-item Hip disability and Osteoarthritis Outcome Score (HOOS) is a reliable and valid measure of pain, symptoms, physical function (daily living and sports/recreation), and quality of life (QOL) in patients with hip disability and OA.20,49,66 The HOOS activities of daily living subscale consists of the WOMAC physical function subscale items.47 The short version of the HOOS20 consists of 5 items, including sitting, descending stairs, getting in/out of a bath or shower, twisting/pivoting on loaded leg, and running.20,53

In a prospective study of 57 patients with hip OA and 100 patients with FAI, the construct validity of a German version of the WOMAC was evaluated.69 The results of the study support the validity of using a reduced 12-item version of the WOMAC for assessing patients with FAI and OA; items removed from the physical function subscale were “bending to the floor,” “putting on socks,” “lying in bed,” “getting off/on toilet,” “heavy domestic duties,” and “light domestic duties.” The item “pain with sitting/lying” was removed from the pain subscale.69

The Brief Pain Inventory (BPI) measures 4 dimensions of pain intensity (now, average, worst, and least). A prospective study77 of 224 patients with hip OA identified established cut points for pain levels: mild, 1 to 4; moderate, greater than 4 to 6; severe, greater than 6 to 10. The BPI has also been shown to have good internal consistency (Cronbach α=.80), construct validity, and responsiveness in a prospective study of 250 patients with hip OA.38

Hyperalgesia has been associated with central pain sensitization and chronic conditions such as OA, and there is growing interest in its potential to inform clinical decision making and research.64 Although hyperalgesia may occur in response to mechanical, thermal, or chemical stimuli, the literature is most well developed in the area of mechanical hyperalgesia.4 A mechanical pressure algometer is commonly used to measure pressure pain threshold (PPT), defined as the minimal amount of pressure at which the sensation of pressure first changes to a sensation of pain. Typically, PPTs are measured in a variety of body locations, and low values in locations away from the primary painful site are used as an indicator of central pain sensitization. Emerging research has demonstrated a strong negative correlation between PPT and pain severity in patients with hip OA.36 Wylde et al26 found a strong negative correlation between PPT measured at the forearm and pain severity as measured by the WOMAC pain subscale in 254 patients with hip OA. Those with low PPT values had high pain severity (P<.001). Aranda-Villalobos et al27 found a similar negative correlation between PPT measured at the second metacarpal, gluteus medius, vastus lateralis, vastus medialis, and anterior tibialis and pain assessed with a visual analog scale (VAS) in 40 adults with hip OA. Goode et al26 investigated hip radiographs, self-reported hip pain, and PPT from the upper trapezius in 1550 individuals aged 45 years and older. They found a significant association between PPT and self-reported hip pain, but no significant association between PPT and the presence or severity of radiographic hip OA. These findings suggest that PPT may be a useful indicator of pain processing associated with hip OA.

2017 Recommendation

Clinicians should use validated outcome measures that include domains of hip pain, body function impairment, activity limitation, and participation restriction to assess outcomes of treatment of hip osteoarthritis.

Measures to assess hip pain may include the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain subscale, Brief Pain Inventory (BPI), pressure pain threshold (PPT), and pain visual analog scale (VAS).
Activity limitation and participation restriction outcome measures may include the WOMAC physical function subscale, the Hip disability and Osteoarthritis Outcome Score (HOOS), Lower Extremity Functional Scale (LEFS), and Harris Hip Score (HHS).

ACTIVITY LIMITATION/PHYSICAL PERFORMANCE MEASURES

2009 Recommendation

Clinicians should utilize easily reproducible physical performance measures, such as the 6-minute walk, self-paced walk, stair measure, and timed up-and-go tests, to assess activity limitation and participation restrictions associated with their patient’s hip pain and to assess the changes in the patient’s level of function over the episode of care.

Evidence Update

Reliability and measurement error were determined for 4 balance tests in 30 people with hip OA: the 4-square step, step, timed single-leg stance, and functional reach tests. Interrater reliability for all tests was sufficient, with intraclass correlation coefficients (ICCs) greater than or equal to 0.85, except for the functional reach test (ICC = 0.62-0.72). Interrater reliability was sufficient for the step test performed on the side of the involved hip and the timed single-leg stance test on the other side (ICC = 0.91), with low measurement error. However, the timed single-leg stance test demonstrated a ceiling effect, indicating potential problems measuring outcomes for higher-functioning patients.

30-Second Chair-Stand Test

- ICF category: activity limitation: changing basic body position
- Description: the number of full sit-to-stand repetitions completed in 30 seconds
- Measurement method: a standard/folding chair is placed with the back against the wall. The clinician should demonstrate the movements and ask the patient to complete a practice trial. Then, the patient begins, seated on the chair with feet shoulder-width apart and flat on the floor and arms crossed at the chest. The patient rises to a full stance and repeats as many as possible in the time allotted. The clinician records the total number of completed chair stands (full rise back to seated position) in 30 seconds
- Nature of variable: continuous
- Units of measurement: the completed number of chair stands
- Measurement properties: in a cohort of 37 adults with hip OA, based on ACR clinical diagnostic criteria
 - Intrarater reliability: ICC = 0.88
 - Minimal detectable change: MDC$_{90}$, 3.5
 - Standard error of the measurement: SEM, 1.5
 - Mean ± SD, 12.6 ± 3.4 in week 1 and 13.5 ± 3.5 in week 2

4-Square Step Test

- ICF category: measurement of activity limitation: moving within the home
- Description: assesses how well a person can manage moving in different directions
- Measurement method: 4 canes are placed with handles out at 90° angles to form 4 squares. After demonstration from clinician and a practice trial, the participant begins by standing in square 1 (always facing square 2 throughout the test) and stepping forward with both feet into square 2, then side steps right into square 3, and steps back into square 4, then returns to square 1 with a side step to the left. The sequence is then reversed back to the starting position (squares 1, 4, 3, 2, and back to 1). Both sequences are completed as quickly as possible
- Nature of variable: continuous
- Units of measurement: seconds
- Measurement properties: in a cohort of 30 adults with hip OA, based on the ACR clinical diagnostic criteria
 - Intrarater reliability
 - ICC = 0.86 (95% CI: 0.72, 0.93)
 - MDC$_{90}$, 1.80 (95% CI: 1.53, 2.42)
 - SEM, 0.77 (95% CI: 0.65, 1.04)
 - Mean ± SD, 8.97 ± 2.32
 - Intrarater reliability (1-week interval)
 - ICC = 0.83 (95% CI: 0.57, 0.93)
 - MDC$_{90}$, 2.00 (95% CI: 1.58, 2.72)
 - SEM, 0.86 (95% CI: 0.68, 1.17)
 - Mean ± SD, 9.07 ± 2.35

Step Test

- ICF category: activity limitation: climbing; moving the whole body upward or downward, such as climbing steps
- Description: determine how many steps a person can complete while standing on the painful hip, assessing a participant’s standing balance
- Method of measurement: after demonstration by the clinician and a practice trial, the participant steps up onto and then off of a 15-cm step while maintaining stance on the painful leg on a 5-cm-wide cardboard template that is used as a starting marker and placed on the floor in front of the step. The other leg is then moved up onto the step, then back down to the floor (the stepping foot must be placed flat on the step and then back down flat on the ground to count as a completed step). The test is performed for 15 seconds, and full steps are counted without the patient moving his or her stance leg from the starting position
(overbalancing). The test may also be performed on the other leg
• Nature of variable: continuous
• Units of measurement: number of steps
• Measurement properties: in a cohort of 30 adults with hip OA, based on clinical diagnostic criteria established by the ACR
• Interrater reliability for standing on the side of the painful hip
 - ICC = 0.94 (95% CI: 0.88, 0.97)
 - MDC, 3.0 (95% CI: 1.97, 3.33)
 - SEM, 1.06 (95% CI: 0.85, 1.43)
 - Mean ± SD, 14.63 ± 4.63
• Intrarater reliability for standing on the side of the painful hip
 - ICC = 0.91 (95% CI: 0.77, 0.96)
 - MDC, 3.0 (95% CI: 2.52, 4.34)
 - SEM, 1.37 (95% CI: 1.08, 1.86)
 - Mean ± SD, 14.71 ± 4.74

Timed Single-Leg Stance

- ICF category: activity limitation: maintaining and shifting center of gravity
- Description: assesses static balance
- Measurement method: after demonstration by the clinician and 1 practice trial, the patient places hands on hips and stands on 1 leg, with the knee of the nonstance leg flexed so the foot is behind the patient and the nonstance hip is in a neutral position. While focusing on a stationary target 1 to 3 m ahead, the patient stands on 1 leg for as long as possible, up to 30 seconds. The test is completed when the patient touches the stance leg, removes hands from hip, or if the stance leg touches the nonstance leg. The longer of 2 trials on each leg, to the nearest 0.1 second, is recorded
- Nature of variable: continuous
- Units of measurement: seconds
- Measurement properties: in a cohort of 30 adults with hip OA, based on clinical diagnostic criteria established by the ACR
- Interrater reliability for standing on the side of the painful hip
 - ICC = 0.89 (95% CI: 0.78, 0.95)
 - MDC, 8.08 (95% CI: 6.44, 10.87)
 - SEM, 3.46 (95% CI: 2.76, 4.66)
 - Mean ± SD, 21.26 ± 10.30
- Intrarater reliability for standing on the side of the painful hip
 - ICC = 0.82 (95% CI: 0.64, 0.91)
 - MDC, 10.78 (95% CI: 8.52, 14.67)
 - SEM, 4.62 (95% CI: 3.65, 6.29)
 - Mean ± SD, 20.63 ± 10.39

2017 Recommendation

A Clinicians should measure balance performance and activities that predict the risk of falls in adults with hip osteoarthritis, especially those with decreased physical function or a high risk of falls because of past history. Recommended balance tests for patients with osteoarthritis include the Berg Balance Scale, 4-square step test, and timed single-leg stance test.

F Clinicians should use published recommendations from the Academy of Geriatric Physical Therapy of the American Physical Therapy Association to guide fall risk management in patients with hip osteoarthritis to assess and manage fall risk.

PHYSICAL IMPAIRMENT MEASURES

2009 Recommendation

Recommended impairment measures and their properties are provided in the 2009 CPG.

Evidence Update

Hip ROM

- ICF category: impairment of body function: mobility of a single joint
- Description: active and passive hip motion are measured in prone, supine, and sitting. Although assessing ROM for supine hip flexion, prone hip IR, and sidelying hip abduction is most important, occasionally clinicians may need to assess other hip motions. The therapist may ask the patient to rate the amount of pain experienced during movement on a 0-to-10 numeric pain-rating scale (NPRS) to assess hip joint irritability and to guide intervention choice
- Nature of variable: continuous (ROM) and ordinal (pain)
- Unit of measurement: degrees and 0-to-10 NPRS rating
- Measurement properties: limited ROM is associated with high levels of disability in patients with hip OA. Pua et al found both excellent intrarater and interrater reliability for hip passive ROM when testing 22 patients with clinical and radiographic evidence of hip OA. Measurement properties for passive hip ROM are provided below.
Hip Pain, Mobility Deficits, Osteoarthritis: Clinical Practice Guidelines Revision 2017

Measurement method: hip IR can be measured in prone or sitting, with goniometer placement being the same for both. The patient is positioned with the knee flexed to 90°. The movement arm of the goniometer is placed along the center of the tibia, while the stationary arm is placed along a vertical plane. When using a bubble goniometer, the distal end of the goniometer is placed 5 cm proximal to the lateral malleolus along the shaft of the fibula. Use of a stabilization belt is preferable to prevent movement of the pelvis. Being careful to control tibiofemoral joint motion, the lower leg is actively or passively moved into IR and measured when a firm end feel is appreciated or the pelvis begins to move. Hip ER can be measured in prone or sitting, and goniometer placement is the same. The patient is positioned with the knee flexed to 90°. The movement arm of the goniometer is placed along the center of the tibia, while the stationary arm is placed along a vertical plane. When using a bubble goniometer, the distal end of the goniometer is placed along the shaft of the tibia 5 cm above the medial malleolus. Use of a belt is preferable to prevent movement of the pelvis. Hip flexion is measured with the patient supine. A strap can be placed across the contralateral thigh to stabilize the pelvis. The stationary arm of the goniometer is aligned along the long axis of the trunk, while the movement arm is aligned parallel with the femur. When using a bubble inclinometer, the inclinometer is zeroed on a horizontal surface and then placed parallel to the femur. Hip abduction is measured in the supine position (passive) or in sidelying (active). The stationary arm of the goniometer is placed so as to connect an imaginary line from the left and right anterior superior iliac spines. The movement arm is parallel along the thigh. The hip is abducted until a firm end feel is noted or the pelvis begins to move. For active abduction, the procedure is the same; however, stabilization of the pelvis is created by body weight. Hip extension is measured with the patient in the supine position and hip joint positioned at the edge of the treatment table. Both hips are fully flexed until there is adequate hip flexion to produce a flattened lumbar spine (Thomas test position); then, the measured hip is slowly extended. Hip extension is measured as the angle between the femur and the horizontal surface. The stationary arm of the goniometer is along the horizontal surface and the movement arm along the thigh. An alternative position is to have the patient lie prone and actively or passively extend the hip. Goniometer position is the same as above.

Hip Muscle Strength

- ICF category: impairment of body function: strength of a single joint
- Description: the amount of muscle strength in hip muscles measured in different positions
- Measurement method: hip IR is tested with the patient seated in a chair or prone, with the knee flexed to 90°. In prone, the pelvis should be stabilized to prevent movement during the test. Resistance is manually applied at the medial distal femur and lateral lower leg. When using a handheld dynamometer (HHD), the device is placed 5 cm above the lateral malleolus. Hip ER is tested with the patient prone and the knee flexed to 90°. In prone, the pelvis should be stabilized to prevent movement during the test. Resistance is manually applied at the lateral distal femur and medial lower leg. When using an HHD, the device is placed 5 cm above the medial malleolus. Hip flexors are tested with the patient seated in a chair or supine, with the knee flexed to 90° (while seated) or extended fully (supine), stabilizing the pelvis as necessary. An HHD is placed 5 cm proximal to the superior pole of the patella (sitting) or 5 cm proximal to the ankle joint (supine). Hip abductors are measured with the patient in supine or sidelying by placing an HHD 5 cm proximal to the lateral femoral condyle to isolate action of the hip joint. Pua et al. measured hip extensor strength with the patient in the supine position, the uninvolved thigh stabilized, and the measured hip placed in 20° of hip flexion, suspended by a strap attached to a force transducer. An alternative method is to measure using the same position, but with an HHD positioned 5 cm proximal to the ankle on the Achilles tendon. This test may also be performed in the prone position.
- Nature of variable: continuous
- Unit of measurement: Newtons, kilograms, or pounds
- Measurement properties: limited strength is associated with high levels of disability in patients with hip OA. Pua et al. found both excellent intrarater and interrater reliability for hip muscle strength when testing 22 patients with clinical and radiographic evidence of hip OA. Tests of isometric muscle strength should be performed for the hip abductors, IRs, ERs, flexors, adductors, and extensors. Bieler et al. also measured hip muscle strength in patients with hip OA and found similar results. Measurement properties for hip muscle strength are provided below.
When examining a patient with hip pain/hip osteoarthritis over an episode of care, clinicians should document the flexion, abduction, and external rotation (FABER or Patrick’s) test and passive hip range of motion and hip muscle strength, including internal rotation, external rotation, flexion, extension, abduction, and adduction.

BEST-PRACTICE POINT

Essential Data Elements

Clinicians should use the following measures, at least at baseline and at 1 follow-up time point, for all patients with hip OA to support standardization for quality improvement in clinical care and research:

Activity Limitation – Self-Report Measures
- WOMAC physical function subscale

Activity Limitation – Physical Performance Measures
- 6-minute walk test
- 30-second chair-stand test
- Timed up-and-go test
- Stair measure

Physical Impairment Measures
- Hip ROM and muscle strength for the following:
 - IR
 - ER
 - Flexion
 - Extension
 - Abduction
 - Adduction
- Pain
- NPRS
- Joint irritability
- FABER test

Pressure Pain Threshold

- **ICF category:** impairment of body function: pain hyperalgesia
- **Description:** a measure of pressure/tenderness taken over the hip joint and in areas away from the hip joint
- **Measurement method:** place the rubber disc of the algometer on the site of choice and apply pressure until the patient indicates that the sensation of pressure has changed to pain. Record the value indicated on the strain gauge. Always begin with the algometer on 0 kg/cm². Change the location on the skin slightly and repeat 2 more times. Allow 30 seconds between trials. Record the average of the 3 trials. Sites to test include the upper trapezius, gluteus medius, second metacarpal, vastus medialis or lateralis, and anterior tibialis. Test both sides
- **Nature of variable:** continuous
- **Units of measure:** kilograms per square centimeter
- **Measurement properties:** the interrater reliability of pressure algometry has been found to be high in healthy individuals, with an ICC of 0.91 (95% CI: 0.82, 0.97).\(^{15}\) Construct validity has been demonstrated, with high correlations between force-plate readings and algometer readings \((r = 0.99)\).\(^{16}\) Values of PPTs (kilopascals) reported by Maquet et al.\(^{48}\) obtained from healthy male and female adults, ranged from 190 to 350 kPa (1.94–3.57 kg/cm²), depending on the site tested. Abnormal tenderness is defined as a PPT that is 2 kg/cm² lower than a normal sensitive corresponding point.\(^{22}\) Values of PPT suggestive of hyperalgesia for individuals with hip OA have not been published.
CLINICAL GUIDELINES

Interventions

ANTI-INFLAMMATORY AGENTS

2009 and 2017 Summary
Nonsteroidal anti-inflammatory drugs (NSAIDs), COX-2 inhibitors, and steroid injections are effective treatments for relief of symptoms in patients with hip OA. Some evidence suggests that NSAIDs may increase the progression of hip OA by decreasing glycosaminoglycan synthesis; however, data are not conclusive. Clinicians should be aware of the incidence of serious gastrointestinal side effects associated with the use of oral NSAIDs.

Evidence Update
Rozendaal et al studied 222 patients with hip OA treated with glucosamine or placebo once daily for 2 years. No differences were noted after 2 years in joint space on radiographs or in WOMAC physical function score. Wandel et al conducted a meta-analysis of glucosamine and/or chondroitin on joint pain and joint space in patients with hip or knee OA. Pain was not improved, nor did glucosamine have an effect on joint space narrowing. The efficacy of intra-articular hyaluronic acid in treating hip OA has still not been established in high-quality randomized clinical trials (RCTs).

2017 Summary
There is insufficient evidence to support the use of supplements such as glucosamine, chondroitin, hyaluronic acid (injectable), or similar substances for the treatment of hip OA.

PATIENT EDUCATION

2009 Recommendation
Clinicians should consider the use of patient education to teach activity modification, exercise, weight reduction when overweight, and methods of unloading the arthritic joints.

Evidence Update
Svege et al conducted a 6-year follow-up study of a previous RCT of 109 patients in which participants were randomized to 2 groups: exercise plus patient education and patient education only (control group). Exercise plus patient education had a protective effect against hip arthroplasty compared with patient education only (hazard ratio = 0.56; 95% CI: 0.32, 0.96). Results showed that exercise therapy plus education and education only were associated with 6-year cumulative survival of the native hip of 41% and 25%, respectively (P = .034).

Fernandes et al enrolled 109 patients with mild to moderate hip OA and compared patient education versus patient education plus exercise at 16 months. The WOMAC physical function scores had improved significantly for the education-plus-exercise group (from an initial score of 21.1 to 15.1), but did not exceed the minimal clinically important difference (MCID) for the outcome measure, while those receiving only patient education improved minimally (from 23.6 to 22.8).

Poulsen et al compared patient education only, patient education plus manual therapy, and minimal (control) intervention (continue medication usage, minimal education on stretching) groups. At 6 weeks, significant differences were found in all HOOS subscales, favoring patient education plus manual therapy versus the minimal (control) intervention group. At 6 weeks, 76.5% of patients in the education-plus-manual therapy group improved, versus 22.2% in the patient-education group and 12.5% in the control group. No overall difference was found between groups for mean pain severity. At 12 months, no differences were noted among groups for pain, HOOS scores, and ROM.

Voorn et al observed 29 patients referred to an outpatient orthopaedic clinic with hip OA who were given tailored management advice and a fol-
low-up phone call by a physical therapist and/or a nurse practitioner to assess whether education was effective in changing their QOL after 10 weeks. Significant improvement was found in the HOOS subscale for sports, the Intermittent and Constant Osteoarthritis Pain questionnaire score, the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) physical functioning subscale score, and the EuroQol-5 dimensions score.

2017 Recommendation

B Clinicians should provide patient education combined with exercise and/or manual therapy. Education should include teaching activity modification, exercise, supporting weight reduction when overweight, and methods of unloading the arthritic joints.

FUNCTIONAL, GAIT, AND BALANCE TRAINING

2009 Recommendation

C Functional gait and balance training, including the use of assistive devices such as canes, crutches, and walkers, can be used in patients with hip OA to improve function associated with weight-bearing activities.

Evidence Update

III Bassen et al. conducted an RCT of patients with self-reported hip OA, comparing a self-paced physical activity intervention individualized based on favorite recreational activity to a wait-list control group. At 3 months, the intervention group demonstrated greater improvement in HOOS physical function score (6.5/100 points) and global rating of change. At 12 months, the intervention group showed higher levels of self-reported physical activity, but no difference in HOOS physical function score or global rating of change, compared to the control group.

2017 Recommendation

C Clinicians should provide impairment-based functional, gait, and balance training, including the proper use of assistive devices (canes, crutches, walkers), to patients with hip osteoarthritis and activity limitations, balance impairment, and/or gait limitations when associated problems are observed and documented during the history or physical assessment of the patient.

MANUAL THERAPY

2009 Recommendation

B Clinicians should consider the use of manual therapy procedures to provide short-term pain relief and improve hip mobility and function in patients with mild hip OA.

Evidence Update

I Bennell et al. completed an RCT of 102 patients with mild, moderate, and severe hip OA confirmed by radiographs, comparing education/advice, manual therapy, home exercise, and gait aid if needed to a sham intervention consisting of inactive ultrasound. The protocol included hip thrust mobilization/manipulation and deep tissue massage in the thigh/hip region. More than half of the sample had moderate to severe hip OA (KL radiographic score grades 3–4), with significantly reduced total hip rotation (mean, 42°) and long duration of hip OA symptoms (intervention group, 36 months; sham group, 30 months). After 13 weeks, there were no between-group differences for pain or function. Mild adverse events were reported by 41% in the active groups versus 14% in the sham group, including hip pain (33%) and spinal stiffness (4%), with 1 in 3 active participants reporting increased hip pain. This study shows that a multimodal physical therapy intervention, including education and advice, manual therapy, and home exercise, in people who have radiographic evidence of moderate/severe hip OA, limited hip rotation, and a long duration of hip pain will not likely have better success with reduction in pain or improvement in function than a sham intervention using inert ultrasound gel.

I Beselga et al. performed an RCT of 40 patients to test the effect of a single session of mobilization-with-movement techniques, compared to a sham treatment, on pain, hip ROM, and function. Compared to the sham group, the mobilization-with-movement group had decreased pain (2/10 points), increased hip flexion (12.2°) and IR (4.4°), and clinically significant improvement in the
40-m self-paced walk test by 11.2 seconds. The intervention was performed by a single physical therapist, which reduces the external validity of the study.

I Brantingham et al23 conducted an RCT comparing manipulative therapy and stretching versus a “full kinetic chain” approach in 111 patients with mild to moderate hip OA (based on ACR criteria, with KL grades ranging from 0 to 3). The manipulative group received high-velocity hip traction and stretching of thigh muscles. The “full kinetic chain” group received manipulative therapy and stretching to the hip plus soft tissue mobilization and manipulation to the low back and ipsilateral knee, ankle, and foot at the discretion of the practitioner. Results indicated that applying manual therapy distal to the hip (knee, ankle, or foot) offers no additional benefit.

II French et al23 completed an RCT comparing the effects of exercise therapy, exercise plus manual therapy, and no therapy in the management of 131 patients with hip OA based on ACR criteria. Manual therapy included grade II and III mobilizations performed for the 2 most restricted movements. Exercise and exercise-plus-manual therapy groups showed statistically significant improvement in WOMAC physical function score, aggregate ROM, and global rating of change at 9 weeks compared to no therapy. There were no significant differences in mean WOMAC physical function or pain score found between exercise therapy and exercise plus manual therapy.

The 2012 review by Brantingham et al23 on the effectiveness of manipulative interventions throughout the lower extremity found fair evidence for benefit of manual therapy in hip OA using a range of measures. This review included 5 case series that provided lower-level support for manual therapy for hip OA.

II Pinto et al23 conducted an economic evaluation of the RCT conducted by Abbott et al1 of patients who met the ACR criteria for hip OA using 1-year outcomes. Manual therapy, exercise therapy, and combined manual and exercise therapy provided gains in quality-adjusted life-years compared to usual medical care. From the societal perspective, manual therapy was cost saving compared to usual care, and exercise therapy was cost-effective. Using either exercise or manual therapy was more cost-effective than the combination of the 2. The 1-year time frame is an important limitation of this study because gains sustained over time would increase cost-effectiveness.

II Poulsen et al27 completed an RCT of 118 patients with hip OA assigned to 3 groups: (1) patient education, (2) patient education plus manual therapy, and (3) control: home stretching. At 6 weeks, no significant differences were found between the groups for mean pain severity. Comparing pairwise change in pain, the education-plus-manual therapy group showed reduction in pain versus the control group (effect size, 0.92) and the education group. No difference was noted between the education and control groups. All HOOS subscale scores showed improvement for the patient education-plus-manual therapy group compared to the control group. For hip ROM, no differences were found.

II Peter et al23 provided an update to the Dutch CPG for hip OA, adding manual therapy to exercise as a level II recommendation for pain and reversible joint mobility limitation. Manual therapy, according to the guidelines, includes manipulation, manual traction, and muscle stretching. The CPG recommends adding manual therapy when hip joint mobility is limited as a preparation for exercise.

III Wright et al23 completed a secondary analysis of data from a previous study of 70 patients with clinical diagnosis of hip OA to determine whether within-session changes in pain, function, and well-being after manual hip traction predicted outcomes at 9 weeks and whether this differed for those who received manual therapy and those who did not. Within-session changes for the group receiving manual hip traction and manual therapy were not associated with 9-week change in pain and function based on the WOMAC pain and function subscale scores and a global rating of change score.

IV Brantingham et al23 conducted a prospective single-group, pretest/posttest study of 18 participants with hip OA based on ACR criteria. Treatment included axial manipulation to the hip combined with manipulative therapy to the spine, knee, ankle, or foot. Results included reduced hip pain and improved function, as evidenced by lower composite WOMAC scores, HHS, and improved hip flexion ROM that were sustained for up to 3 months.

II Hando et al27 performed a case series of 27 patients with mild to severe hip OA based on ACR criteria. Treatment included ten 30-minute sessions over 8 weeks for preselected manual therapy (muscle stretching, nonthrust and thrust manipulation) and therapeutic exercise as a home program. After 8 weeks, the HHS improved an average of 20.4 points (100-point scale) and the NPRS was reduced by an average of 2.3 (0–10) points.

2017 Recommendation

Clinicians should use manual therapy for patients with mild to moderate hip osteoarthritis and impairment of joint mobility, flexibility, and/or pain. Manual therapy may include thrust, nonthrust, and soft tissue manipulation to the low back and ipsilateral knee, ankle, and foot at the discretion of the practitioner. Results indicated that applying manual therapy distal to the hip (knee, ankle, or foot) offers no additional benefit.
mobilization. Doses and duration may range from 1 to 3 times per week over 6 to 12 weeks in patients with mild to moderate hip osteoarthritis. As hip motion improves, clinicians should add exercises, including stretching and strengthening to augment and sustain gains in the patient’s range of motion, flexibility, and strength.

FULLEXIBILITY, STRENGTHENING, AND ENDURANCE EXERCISES

2009 Recommendation

Clinicians should consider the use of flexibility, strengthening, and endurance exercises in patients with hip OA.

Evidence Update

Abbott et al. conducted an RCT of usual medical care versus manual therapy and/or exercise therapy in addition to usual medical care in 206 patients with hip or knee OA. Results for hip and knee OA were similar and therefore combined. Each intervention group demonstrated statistically significant improvement at 1 year. The WOMAC composite score improvement was greater than the MCID of 28 points for the usual care-plus-manual therapy and usual care-plus-exercise therapy groups. The magnitude of improvement in the WOMAC composite score was smaller for usual care plus exercise than for usual care plus manual therapy.

Krauss et al. performed an RCT comparing exercise therapy, ultrasound, and a control group in 218 patients with ACR clinical diagnosis of hip OA. The WOMAC showed significant differences between the ultrasound and exercise groups for pain reduction (5.1) and physical function (5.5). The WOMAC showed that the exercise group had significant improvement in pain reduction (7.4) and physical function (6.4) compared to the control group. The WOMAC stiffness subscale was not different between the groups.

Villadsen et al performed a secondary analysis of an RCT comparing the effects of an 8-week neuromuscular exercise and education program versus an education-only group on activity in 84 patients scheduled for THA. The exercise-plus-education group had significant improvement in the HOOS activities of daily living subscale compared to the education group (7.3 points; effect size, 0.63). The HOOS pain, sport and recreation function, and joint-related QOL subscale scores, as well as chair stands and the 20-m self-paced walk, all significantly improved in the exercise-plus-education group.

The RCT by Juhakoski et al investigated short- and long-term effects (2 years) of exercise on pain and function in 120 people with an ACR clinical diagnosis of hip OA and a KL score greater than 1. The control group received usual care consisting of medication (NSAIDs and analgesics) and physical therapy (thermal modalities, transcutaneous electrical nerve stimulation, electrical stimulation, and acupuncture). The intervention group received usual care plus 12 supervised group exercise sessions plus a booster session at 1 year. No differences were found between groups for WOMAC pain and physical function scores and SF-36 physical component summary score at 2 years. There was statistically significant improvement in the WOMAC physical function score (7 points) for the intervention group at 6 and 18 months compared to the usual-care group. The exercise program was standardized, and intensity was not adjusted individually.

In their RCT, Pisters et al. compared the effect at 5 years of usual exercise and exercise plus behavioral graded activity. Usual exercise followed the Dutch guideline for hip OA (hip muscle strengthening, aerobic capacity, function, and gait, with focus on limitation of activities and restrictions on participation), including advice, and encouraged coping strategies. Behavioral graded activity consisted of a tailored exercise program using operant conditioning. A difference was found at 3 and 9 months for reduction of pain and improved physical function in favor of behavioral graded activity. At 60 months, both groups showed improvement, but no differences were found between groups. Behavioral graded activity also reduced the likelihood of joint replacement surgery and improved exercise adherence.

Bennell et al. randomized 102 patients with hip OA and compared a physical therapy intervention consisting of manual therapy to the hip and spine, deep tissue massage, stretching, strengthening of the hip and leg, functional balance, gait drills, home exercises, and education and advice for 12 weeks to a sham intervention consisting of inactive ultrasound. Differences between groups for pain and function were not significant, except at week 13 in the active group, with improvement noted in the balance step test.

Fukumoto et al. randomized 46 women diagnosed with hip OA based on the Japanese Orthopaedic Association classification system to assess the difference between high-velocity and low-velocity resistance exercise programs at 8 weeks. Women were stratified into groups by age and hip OA severity. Both training approaches reduced hip pain and improved function (HHS), but did not demonstrate improvements beyond the MDCs for isometric strength, muscle power, clinical assessment, muscle mass, and composition. The results support the use of exercise in patients with hip OA, but indicate no preference for high-versus low-velocity resistive exercise.
Ageberg et al prospectively followed a group of 38 patients with severe hip OA based on pain, disability, and radiographic findings. Patients received up to 20 individualized goal-based interventions that consisted of neuromuscular training exercises. The HOOS scores for pain, symptom, activities of daily living, sport, and QOL had improvements of 6.1, 4.7, 5.0, 6.9, and 7.1 points (0-100) from baseline scores. Improvements found in this study of an individual approach to exercise should be confirmed in controlled studies.

Paans et al studied the effect of an 8-month combined exercise and weight-loss program in a prospective cohort of 35 patients with hip OA. Significant improvements were found at 3 months for WOMAC physical function and WOMAC pain and stiffness scores, pain VAS, SF-36 physical component summary score, body mass, and body fat. At 8 months, improvements were found for WOMAC physical function (33%), WOMAC pain and stiffness, SF-36, pain VAS, 6-minute and 20-m walk tests, and body mass and body fat. Adherence rates to exercise and diet components were 94% and 82%, respectively.

Jigami et al provided land-based and aquatic exercises to 2 groups of 36 patients. One group exercised weekly and the other group exercised biweekly, each for a total of 10 sessions. Muscle strength improved in the weekly group only (hip flexors, +5.7 kg; extensors, +5.8 kg; abductors, +4.3 kg). Both groups improved in the timed up-and-go test and timed 1-leg standing with eyes open test.

Clinicians should use individualized flexibility, strengthening, and endurance exercises to address impairments in hip range of motion, specific muscle weaknesses, and limited thigh (hip) muscle flexibility. For group-based exercise programs, effort should be made to tailor exercises to address patients’ most relevant physical impairments. Dosage and duration of treatment for effect should range from 1 to 5 times per week over 6 to 12 weeks in patients with mild to moderate hip osteoarthritis.

2017 Recommendation

Clinicians may use ultrasound (1 MHz; 1 W/cm² for 5 minutes each to the anterior, lateral, and posterior hip for a total of 10 treatments over a 2-week period) in addition to exercise and hot packs in the short-term management of pain and activity limitation in individuals with hip osteoarthritis.

BRACING 2009

No recommendation.

Evidence Update

Sato et al explored the effects of using an S-form hip brace in a cross-sectional survey of 16 patients (15 females) with mild hip OA, with an “on versus off” brace design. Two types of braces were studied, unilateral and bilateral, with usage depending on unilateral versus bilateral hip OA. Using the unilateral brace, the mean timed up-and-go test time when turning and rounding a cone with the unbraced leg, inside of the cone but not outside, showed improvements at 3 months, which were maintained at 12 months. Improvements were found in the timed up-and-go test at 6 or 12 months for the bilateral hip brace. The HHS improved in 9 out of 10 hips at 1 month. Economic cost and the demands of daily wear are drawbacks.

2017 Recommendation

Clinicians should not use bracing as a first line of treatment. A brace may be used after exercise or manual therapies are unsuccessful in improving participation in activities that require turning/pivoting for patients with mild to moderate hip osteoarthritis, especially in those with bilateral hip osteoarthritis.

WEIGHT LOSS 2009 Recommendation

No recommendation.
Evidence Update

Paans et al. investigated the effect of exercise and dietary guidance for weight loss on function in a cohort study with hip OA, with the following inclusion criteria: ACR hip OA criteria, 25 years of age or older, overweight (BMI greater than 25 kg/m²), or obese (BMI greater than 30 kg/m²). Significant decreases in body mass and body fat were found at 8 months (5% and 3.3%, respectively). Self-reported WOMAC physical function subscale scores also improved after 3 and 8 months, by 11% and 17%, respectively. The WOMAC pain subscale score decreased by 24.8% at 8 months.

Walking distance on the 6-minute walk test improved by 11.6%.

2017 Recommendation

In addition to providing exercise intervention, clinicians should collaborate with physicians, nutritionists, or dietitians to support weight reduction in individuals with hip osteoarthritis who are overweight or obese.

A model to guide clinical decisions regarding examination and treatment planning for individuals with hip pain and mobility deficits—hip osteoarthritis is depicted in the FIGURE.

Key Clinical Findings of Hip Pain and Mobility Deficits—Hip OA

- Moderate anterior or lateral hip pain during weight-bearing activities
- Morning stiffness less than 1 hour in duration after wakening
- Hip IR ROM less than 24°
- IR and hip flexion 15° less than the nonpainful side
- Increased hip pain associated with passive hip IR
- Absence of history, activity limitations, and/or impairments inconsistent with hip OA

Measures to Assess Level of Functioning, Presence of Associated Physical Impairments to Address With Treatment, and Response to Treatment*

Activity/Participation Measures (A)
- LEFS
- WOMAC
- BPI
- HOOS
- HHS
- Pain VAS
- Berg Balance Scale
- Timed up-and-go test
- Stair measure
- Self-paced walk test
- 4-square step test
- Step test
- Timed single-leg stance
- 30-second chair stand
- 6-minute walk test

Impairment Measures
- FABER test (A)
- Scour test (A)
- Hip flexion ROM (A)
- Hip IR ROM (A)
- Hip ER ROM (A)
- Hip extension ROM (A)
- Hip abduction/gluteus medius strength and motor control (A)
- Hip extension/gluteus maximus strength and motor control (A)
- Pain at rest: current level of pain (0-10, 0 best) (F)
- Pain at best: lowest level of pain in recent 24 hours (0-10, 0 best) (F)
- Pain at worst: highest level of pain in recent 24 hours (0-10, 0 best) (F)
- Pain frequency: percent of time in pain in recent 24 hours (0%-100% of time, 0% best) (F)

Figure continues on page A21.
Interventions

Note: Interventions should be tailored to address the specific hip OA-related impairments and limitations identified on examination.

Flexibility, Strengthening, and Endurance Exercises (A)
- Dosage: 1 to 5 times per week over 6 to 12 weeks for mild to moderate hip OA
- Hip capsule, fascia, and muscle stretching, including extension, flexion, IR, ER, abduction, and horizontal adduction, with attention to hip flexors and ERs
- Strengthening of hip abductors, ERs, extensors

Manual Therapy (A)
- Soft tissue mobilization of areas of soft tissue restriction, such as iliacus, hip ERs, posterior gluteus medius, quadratus femoris, and gluteus maximus
- Joint mobilizations to improve identified restrictions in joint mobility, such as hip distraction mobilizations, posterior glides, anterior glides, and distraction mobilizations with movement

Functional, Gait, and Balance Training (C)
- Balance, functional, and gait training to address identified limitations
- Proper use of assistive devices (canes, crutches, walkers)
- Individualized exercise prescription based on patient values, needs, and activities

Patient Education Combined With Exercise (B)
- Address weight-bearing activity modification as appropriate
- Provide exercises to address identified impairments and to support weight reduction as appropriate
- Discuss unloading the arthritic joints as appropriate

Weight Loss (C)
- Refer and collaborate as needed to physicians, nutritionists, or dietitians to support weight management plan

Modalities (B)
- Ultrasound may be used in addition to exercise for short-term pain and activity limitation management for up to 2 weeks

Revise Diagnosis, Change Plan of Care, or Refer to Appropriate Clinicians
- When the patient’s symptoms do not diminish after targeted interventions within expected time frame, as identified in the tailored treatment plan

FIGURE (CONTINUED). Hip pain and mobility deficits—hip osteoarthritis examination/intervention guidelines decision-making model.
AFFILIATIONS AND CONTACTS

<table>
<thead>
<tr>
<th>Authors</th>
<th>Affiliations and Contacts</th>
</tr>
</thead>
</table>
| Michael T. Cibulka, DPT, MHS | Department of Orthopaedic Surgery
Geisel School of Medicine at
Dartmouth
Dartmouth-Hitchcock Medical Center
Lebanon, NH
and
Research Assistant Professor
Health and Disability Research Institute
Boston University School of Public Health
Boston, MA
cmm@bu.edu |
| Nancy J. Bloom, DPT, MSOT | Keelan R. Enseki, PT, MS
Physical Therapy Orthopaedic Residency Program Director
Centers for Rehab Services
University of Pittsburgh Medical Center
Center for Sports Medicine
Pittsburgh, PA
enseki@upmc.edu |
| Cameron W. MacDonald, PT, DPT | Cameron W. MacDonald, PT, DPT
Physical Therapy Program
Regis University
Denver, CO
cmacdonald@regis.edu |
| Judy Woehrle, PT, PhD | John Dewitt, DPT
Director
Physical Therapy Sports and Orthopaedic Residencies
The Ohio State University
Columbus, OH
john.dewitt@osumc.edu |
| Christine M. McDonough, PT, PhD | Amanda Ferland, DPT
Clinical Facultty
Intech Rehabilitation Group/Division of Biokinesiology and Physical Therapy
Orthopaedic Physical Therapy Residency
University of Southern California
Los Angeles, CA
and
Spine Rehabilitation Fellowship
Beijing, China
AmandaFerland@incarehab.com
Marcie Harris-Hayes, DPT, MSCI
Associate Professor
Physical Therapy and Orthopaedic Surgery
Washington University School of Medicine
St Louis, MO
harrisma@wustl.edu |
| Roy Altman, MD | M. Elizabeth Hammond, MD
Consultant Pathologist
Intermountain Healthcare
and
Professor of Pathology-Emerita
University of Utah School of Medicine
Salt Lake City, UT
liz.hammond@hotmail.com |
| Liz. Hammond, FAPT A | Sandra Kaplan, PT, PhD
Clinical Practice Guidelines Coordinator
Academy of Pediatric Physical Therapy, APTA, Inc
Alexandria, VA
and
Professor
Doctoral Programs in Physical Therapy
Rutgers University
Newark, NJ
kaplausa@shp.rutgers.edu |
| Liz. Hammond, FAPT A | Heather Stone Keelty, DPT
Director of Professional Development
San Francisco Sport and Spine Physical Therapy
San Francisco, CA
hstone2@gmail.com |
| Liz. Hammond, FAPT A | David Killoran, PhD
Patient/Consumer Representative for the ICF-Based Clinical Practice Guidelines
Orthopaedic Section, APTA, Inc
La Crosse, WI
and
Professor
Department of Physical Therapy
Marquette University
Milwaukee, WI
guy.simoneau@marquette.edu |

ACKNOWLEDGMENTS

The authors would like to acknowledge the contributions of Dartmouth Biomedical Libraries Research and Education Librarians, Heather Blunt, and Pamela Bagley for their guidance and assistance in the design and implementation of the literature search and documentation.
REFERENCES

61. Sato E, Sato T, Yamaji T, Watanabe H. Effect of the WISH-type hip brace on functional mobility in patients with osteoarthritis of the hip: evaluation...

APPENDIX A

SEARCH STRATEGIES FOR ALL DATABASES SEARCHED

Assessment

PubMed

Cochrane Library

((CT or radiograph * or radiologic * or diagnos * or misdiagnos * or ultrasonography or sonography or ultrasound * or sonogram *) or tomography or x-ray or x-ray or mri or imaging or examination or exam or evaluat * or classif * or specificity or kellgren * or mankin) womac or hoos or mactar or lish or oakhqol or “walk test” or “stair measure” or “timed up and go” or “lower extremity functional scale” or lefs or “harris hip score” or “faber test” or “scour test” or “sit to stand test” or “step test” or “stance test” or “stair climb” or “performance-based” or Questionnaire or Questionnaires or Instrument or Instruments or Scale or Scales or Measurement or Measurements or Index or Indices or Score Scores)

CINAHL

((womac or hoos or mactar or lish or oakhqol or “walk test” or “stair measure” or “timed up and go” or “lower extremity functional scale” or lefs or “harris hip score” or “faber test” or “scour test” or “sit to stand test” or “step test” or “stance test” or “stair climb” or “performance-based” or Questionnaire or Questionnaires or Instrument or Instruments or Scale or Scales or Measurement or Measurements or Index or Indices or Score Scores)

SEARCH STRATEGIES FOR ALL DATABASES SEARCHED

Intervention

PubMed

APPENDIX A

Cochrane Library

((hip or hips) and osteoarthr*modalit* or “electric stimulation” or “electrical stimulation” or electrotherapy or tens or “transcutaneous electric nerve stimulation” or electroacupuncture or acupuncture or needling or heat or cold or traction or laser or lasers or rehabilitation or “physical therapy” or “physical therapies” or physiotherap* or cryotherapy or hyperthermia or “vapocoolant spray” or cryoanesthesia or ice or faradic or traction or iontophoresis or phonophoresis or phototherapy or hydrotherapy or “light therapy” or diathermy or ultraviolet or infrared; exercises* or massag* or “manual therapy” or accupuncture or manipulat* or “applied kinesiology” or stretching or stretch or stretches or “continuous passive movement” or “continuous passive motion” or pnyrometric or pnyrometrics or “resistance training” or “strength training” or strengthening or “weight-bearing” or weightbearing or “weight-lifting” or weightlifting or “physical conditioning” or education or balneotherapy or “aquatic therapy” or pool therapy OR water aerobics OR water running OR water training OR gait aids OR gait aide OR gait training OR crutches OR walker OR walkers OR cane OR canes OR orthot* OR orthoses OR orthosis OR activity modification OR balance training OR functional training OR assistive devices OR assistive device OR mobilization OR mobilisation OR “flexibility training” or “endurance training” or “propriopceptive neuromuscular facilitation” or “manual resistance” or “aerobic activity”)

CINAHL

((MH Exercise+ OR MH Assistive Technology Devices+ OR MW ED OR MH “Patient Education+ OR MH orthoses + OR MW TH) OR TI (exercise * OR massage* OR manual therapy OR accupuncture OR manipulat* OR applied kinesiology OR stretching OR stretch OR stretches OR “continuous passive movement” OR “continuous passive motion” OR pnyrometric or pnyrometrics OR resistance training OR strength training OR strengthening OR weight-bearing OR weightbearing OR weight-lifting OR weightlifting OR physical conditioning OR education

OR balneotherapy OR aquatic therapy OR pool therapy OR water aerobics OR water running OR water training OR gait aids OR gait aide OR gait training OR crutches OR walker OR walkers OR cane OR canes OR orthosis OR activity modification OR balance training OR functional training OR assistive devices OR assistive device OR mobilization OR mobilisation OR “flexibility training” or “endurance training” or “propriopceptive neuromuscular facilitation” or “manual resistance” or “aerobic activity”))

PEDro

hip* AND osteoarthr*

body part: hip or thigh
APPENDIX B

SEARCH RESULTS

<table>
<thead>
<tr>
<th>Database/Platform</th>
<th>Time Covered</th>
<th>Date Conducted</th>
<th>Results, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PubMed</td>
<td>2008-date</td>
<td>August 4, 2014</td>
<td>3464</td>
</tr>
<tr>
<td>PubMed</td>
<td>July 2014-date</td>
<td>April 8, 2016</td>
<td>100</td>
</tr>
<tr>
<td>CINAHL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBSCO</td>
<td>2008-July 2014</td>
<td>August 4, 2014</td>
<td>183</td>
</tr>
<tr>
<td>ESSCO</td>
<td>July 2014-date</td>
<td>April 8, 2016</td>
<td>47</td>
</tr>
<tr>
<td>Cochrane Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiley</td>
<td>Current as of August 4, 2014</td>
<td>August 4, 2014</td>
<td>412</td>
</tr>
<tr>
<td>Wiley</td>
<td>2014-date: DSR, issue 4 (April 2016); DARE, issue 2 (April 2015); CENTRAL, issue 3 (March 2016); HTA, issue 1 (January 2016)</td>
<td>April 8, 2016</td>
<td>258 (DSR, 13; other, 2; CENTRAL, 242; HTA, 1)</td>
</tr>
<tr>
<td>PEDro</td>
<td>2008-date</td>
<td>August 4, 2014</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>April 8, 2016</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>August 4, 2014</td>
<td>4142</td>
</tr>
<tr>
<td>With duplicates removed</td>
<td>August 4, 2014</td>
<td>3691</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>April 8, 2016</td>
<td>1734</td>
</tr>
<tr>
<td>With duplicates removed</td>
<td>April 8, 2016</td>
<td>1589</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CENTRAL, Cochrane Central Register of Controlled Trials; DARE, Database of Abstracts of Reviews of Effects; DSR, Database of Systematic Reviews; HTA, Health Technology Assessment.
APPENDIX B

SEARCH RESULTS

<table>
<thead>
<tr>
<th>Database/Platform</th>
<th>Time Covered</th>
<th>Date Conducted</th>
<th>Results, n</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PubMed</td>
<td>July 2014-date</td>
<td>March 11, 2016</td>
<td>431</td>
</tr>
<tr>
<td>CINAHL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBSCO</td>
<td>2008-date</td>
<td>July 14, 2014</td>
<td>445</td>
</tr>
<tr>
<td>ESSCO</td>
<td>2014-date</td>
<td>March 11, 2016</td>
<td>131</td>
</tr>
<tr>
<td>Cochrane Library</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiley</td>
<td>April 2014-July 2014: DSR, issue 7 (July 2014); DARE, issue 2 (April 2014); CENTRAL, issue 6 (June 2014); EED, issue 2 (April 2014)</td>
<td>July 14, 2014</td>
<td>204 (DSR, 13; DARE, 14; CENTRAL, 171; EED, 6)</td>
</tr>
<tr>
<td>Wiley</td>
<td>April 2015-March 2016: DSR, issue 3 (March 2016); DARE, issue 2 (April 2015); CENTRAL, issue 2 (February 2016); HTA, issue 1 (January 2016)</td>
<td>March 11, 2016</td>
<td>132 (DSR, 8; DARE, 3; CENTRAL, 120; HTA, 1)</td>
</tr>
<tr>
<td>PEDro</td>
<td>2008-date</td>
<td>July 15, 2014</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>March 11, 2016</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>July 15, 2014</td>
<td>1787</td>
</tr>
<tr>
<td></td>
<td>With duplicates removed</td>
<td>July 15, 2014</td>
<td>1297</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>March 11, 2016</td>
<td>721</td>
</tr>
<tr>
<td></td>
<td>With duplicates removed</td>
<td>March 11, 2016</td>
<td>579</td>
</tr>
</tbody>
</table>

Abbreviations: CENTRAL, Cochrane Central Register of Controlled Trials; DARE, Database of Abstracts of Reviews of Effects; DSR, Database of Systematic Reviews; EED, NHS Economic Evaluation Database; HTA, Health Technology Assessment; NHS, National Health Service.
ARTICLE INCLUSION AND EXCLUSION CRITERIA

Inclusion Criteria
We included articles providing evidence of the following types: systematic reviews, meta-analyses, experimental, cohort, and cross-sectional studies reporting on:

- Must have diagnostic hip OA with either radiographic or clinical confirmation (using established criteria such as the ACR criteria)
- Have at least a sample size of 15 or greater
- If the study included both hip and knee OA, the results must be reported separately

OR
- Tests and measures for diagnosis and/or differential diagnosis of hip OA within the scope of physical therapy practice (including but not limited to lumbar spine, sacroiliac joint, hernia, and cancer)
- Tests and methods for diagnosis and/or differential diagnosis of hip OA using imaging (including but not limited to ultrasound, plain-film radiography, and MRI)

OR
- Measurement properties of tests and measures specific to hip OA-related symptoms and outcomes (WOMAC, HHS, HOOS, Lequesne Index of Severity for Osteoarthritis of the Hip [LISH], Osteoarthritis Knee and Hip Quality of Life Questionnaire, American Academy of Orthopaedic Surgeons Hip and Knee Outcomes Questionnaire, Oxford hip and knee score, Lower Limb Core Scale, VAS, LEFS, SF-36, World Health Organization Disability Assessment Schedule [WHODAS], QOL)

OR
- Measurement properties of tests/measurements using data from a sample of patients with hip OA, including active and passive ROM; pain; manual muscle tests; muscle length measures; and special tests, including but not limited to the flexion, abduction, and external rotation (FABER), flexion, adduction, and internal rotation (FADIR), log roll, and scour tests

OR
- Measurement properties of tests and measures specific to hip OA-related functions, activity, and participation (including but not limited to the 6-minute walk test, self-paced walk test, stair measure, timed up-and-go test. Berg Balance Scale, 5-time sit-to-stand test, functional gait, 10-m walk test, and EQ-5D)

AND
- Interventions within the scope of the practice of physical therapy, including coordination training, functional training, gait training, balance training, modalities (including but not limited to heat, electrical stimulation, ultrasound, diathermy), manual therapy (including but not limited to manipulation, joint mobilization, soft tissue mobilization, massage), exercise (including but not limited to stretching/flexibility, proprioceptive neuromuscular facilitation, manual resistance, resistance/strength training, aerobic and endurance activities, community-based and self-management programs), assistive devices, and education

Exclusion Criteria
We excluded abstracts, press reports, editorial letters, and articles reporting on:

- Study protocols
- Animal studies
- Children (aged less than 18 years)
- Primary surgical studies
- Legg-Calve-Perthes disease
- Congenital hip dislocation
- SCFE
- Hip dysplasia
- FAI
APPENDIX D

FLOW CHART OF ARTICLES

Assessment

Records identified through database search, n = 5876

Duplicates removed, n = 596

Records screened (title and abstract), n = 5280

Records excluded, n = 5143

Full-text articles reviewed, n = 137

Full-text articles excluded, n = 67
• Methodology, n = 24
• Subjects outside scope, n = 21
• Tests/measures outside scope, n = 14
• Abstract only, n = 5
• Duplicates, n = 3

Articles found from other sources, n = 4

Relevant articles, n = 74

Articles not used in recommendations, n = 52
• Methodology, n = 16
• Outside recommendation scope, n = 16
• Evidence insufficient for new recommendation, n = 21

Articles used in recommendations, n = 22
APPENDIX D

FLOW CHART OF ARTICLES

Intervention

- Records identified through database search, n = 2508
- Duplicates removed, n = 632
- Records screened (title and abstract), n = 1876
- Records excluded, n = 1817
- Full-text articles reviewed, n = 59
- Full-text articles excluded, n = 31
 - Methodology, n = 26
 - Subjects outside scope, n = 2
 - Tests/measures outside scope, n = 3
- Articles found from other sources, n = 4
- Articles used in recommendations, n = 27
- Relevant articles, n = 32
 - Articles not used in recommendations, n = 5
 - Methodology, n = 3
 - Outside recommendation scope, n = 2
ARTICLES INCLUDED IN RECOMMENDATIONS BY TOPIC

Diagnosis/Classification

Examination

Outcome Measures: Activity Limitations – Self-report Measures

Outcome Measures: Activity Limitation – Physical Performance Measures

Physical Impairment Measures

APPENDIX E

Interventions

Patient Education

Functional, Gait, and Balance Training

Manual Therapy

APPENDIX E

Flexibility, Strengthening, and Endurance Exercises

Modalities

Bracing

Weight Loss

APPENDIX F

LEVELS OF EVIDENCE TABLE

<table>
<thead>
<tr>
<th>Level</th>
<th>Intervention/Prevention</th>
<th>Pathoanatomic/Risk/ Clinical Course/Prognosis/ Differential Diagnosis</th>
<th>Diagnosis/Diagnostic Accuracy</th>
<th>Prevalence of Condition/Disorder</th>
<th>Exam/Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Systematic review of high-quality RCTs</td>
<td>Systematic review of prospective cohort studies</td>
<td>Systematic review of high-quality diagnostic studies</td>
<td>Systematic review, high-quality cross-sectional studies</td>
<td>Systematic review of prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality RCT†</td>
<td>High-quality prospective cohort study²</td>
<td>High-quality diagnostic study³ with validation</td>
<td>High-quality cross-sectional study</td>
<td>High-quality prospective cohort study</td>
</tr>
<tr>
<td></td>
<td>Systematic review of high-quality prospective cohort studies</td>
<td>Systematic review of prospective cohort studies</td>
<td>Systematic review of exploratory diagnostic studies or consecutive cohort studies</td>
<td>Systematic review of studies that allows relevant estimate</td>
<td>Systematic review of lower-quality prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality retrospective cohort study</td>
<td>Systematic review of high-quality retrospective cohort studies</td>
<td>High-quality exploratory diagnostic studies</td>
<td>Low-quality cross-sectional study</td>
<td>Low-quality prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>Outcomes study or ecological study</td>
<td>Consecutive cohort</td>
<td>Consecutive retrospective cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower-quality RCT¶</td>
<td>Lower-quality cross-sectional study</td>
<td>Lower-quality cross-sectional study</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Systematic reviews of case-control studies</td>
<td>Lower-quality retrospective cohort study</td>
<td>Local nonrandom study</td>
<td>High-quality cross-sectional study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-quality case-control study</td>
<td>Lower-quality exploratory diagnostic studies</td>
<td>Nonconsecutive retrospective cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower-quality cohort study</td>
<td>High-quality cross-sectional case-control study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Systematic review of high-quality cohort studies</td>
<td>Systematic review of retrospective cohort study</td>
<td>Systematic review of exploratory diagnostic studies or consecutive cohort studies</td>
<td>Systematic review of studies that allows relevant estimate</td>
<td>Systematic review of lower-quality prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality cohort study²</td>
<td>High-quality retrospective cohort study</td>
<td>High-quality exploratory diagnostic studies</td>
<td>Low-quality cross-sectional study</td>
<td>Low-quality prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>Outcomes study or ecological study</td>
<td>Outcomes study or ecological study</td>
<td>Consecutive cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower-quality RCT¶</td>
<td>Lower-quality cross-sectional study</td>
<td>Lower-quality cross-sectional study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Systematic reviews of case-control studies</td>
<td>Lower-quality retrospective cohort study</td>
<td>Lower-quality exploratory diagnostic studies</td>
<td>Local nonrandom study</td>
<td>High-quality cross-sectional study</td>
</tr>
<tr>
<td></td>
<td>High-quality case-control study</td>
<td>High-quality cross-sectional case-control study</td>
<td>High-quality cross-sectional cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower-quality cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Case series</td>
<td>Case series</td>
<td>Case-control study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td></td>
</tr>
</tbody>
</table>

*Adapted from Phillips et al² (http://www.cebm.net/index.aspx?o=1025). See also APPENDIX G.

†High quality includes RCTs with greater than 80% follow-up, blinding, and appropriate randomization procedures.

‡High-quality cohort study includes greater than 80% follow-up.

§High-quality diagnostic study includes consistently applied reference standard and blinding.

¶High-quality prevalence study is a cross-sectional study that uses a local and current random sample or censuses.

Weaker diagnostic criteria and reference standards, improper randomization, no blinding, and less than 80% follow-up may add bias and threats to validity.

Abbreviation: RCT, randomized clinical trial.
APPENDIX G

PROCEDURES FOR ASSIGNING LEVELS OF EVIDENCE

- Level of evidence is assigned based on the study design using the Levels of Evidence table (*APPENDIX F*), assuming high quality (e.g., for intervention, randomized clinical trial starts at level I).
- Study quality is assessed using the critical appraisal tool, and the study is assigned 1 of 4 overall quality ratings based on the critical appraisal results.
- Level of evidence assignment is adjusted based on the overall quality rating:
 - High quality (high confidence in the estimate/results): study remains at assigned level of evidence (e.g., if the randomized clinical trial is rated high quality, its final assignment is level I). High quality should include:
 - Randomized clinical trial with greater than 80% follow-up, blinding, and appropriate randomization procedures.
 - Acceptable quality (the study does not meet requirements for high quality and weaknesses limit the confidence in the accuracy of the estimate): downgrade 1 level.
 - Based on critical appraisal results.
 - Low quality: the study has significant limitations that substantially limit confidence in the estimate: downgrade 2 levels.
 - Based on critical appraisal results.
 - Unacceptable quality: serious limitations—exclude from consideration in the guideline.
 - Based on critical appraisal results.
- Cohort study includes greater than 80% follow-up.
- Diagnostic study includes consistently applied reference standard and blinding.
- Prevalence study is a cross-sectional study that uses a local and current random sample or censuses.
 - Acceptable quality (the study does not meet requirements for high quality and weaknesses limit the confidence in the accuracy of the estimate): downgrade 1 level.
 - Based on critical appraisal results.
- Premature discontinuation of a study: the final level of evidence should be reassigned (e.g., if the randomized clinical trial is not completed due to lack of efficacy or adverse outcomes, the final assignment may be lower than if the trial was completed).
- Inconsistencies and irreconcilable differences in evidence: the final level of evidence should be reassigned (e.g., if the evidence supports different conclusions).
- Level of evidence is reassigned after the draft guideline is published if new evidence is published.