Fracture to Arthroplasty: Management Strategies at the Ankle and Hindfoot

Session Learning Objectives
- Review current evidence on outcomes for patients with ankle and hindfoot fractures, as well as post-traumatic arthritis.
- Identify treatment approaches for managing patients with complex hindfoot and ankle fractures, as well as post-traumatic arthritis.
- Recognize surgical indications for total ankle arthroplasty and understand post-operative rehabilitation guidelines.
- Recognize the clinical presentation and biomechanical characteristics of patients with post-traumatic arthritis who may elect total ankle arthroplasty.
- Present a case study highlighting the progression of physical therapy management following hindfoot fracture to management post total ankle arthroplasty

Disclosure
• We have no relationships that could reasonably be viewed as creating a conflict of interest, or the appearance of a conflict of interest, that might bias the content of the presentation.

The Continuum of Outcomes following Hindfoot and Ankle Fractures
Stephanie Albin, DPT, OCS, FAAOMPT
Assistant Professor, Regis University School of Physical Therapy

Surgical Procedures 2012-16

Ankle Fractures
- Types:
 - Weber fractures
 - Pilon fractures
 - Maisonneuve fractures
 - Weber C, syndesmotic, deltoid involvement
Fractures to Arthroplasty: Management Strategies at the Ankle and Hindfoot

Ankle Fractures

- Types:
 - Weber fractures
 - Pilon fractures
 - Maisonneuve fractures
 - Weber C, syndromic, deltoid involvement

Hindfoot Fractures

- Talus
 - Lat process fractures
 - Neck fractures
 - Hawkins I-IV
 - Body fractures
 - Fractures of the head
 - Combination
 - Osteochondral fractures
- Calcaneus
 - Posterior facet
 - Tongue-type fractures
 - Ant Process fractures

History

- What was the mechanism?
 - Sports? Fall (how far)? MVA?
 - Stairs? Ice?
- What direction did the foot/ankle go?
 - Inversion or Eversion?
 - Plantarflexion or Dorsiflexion?
 - Combined?
- Hear or feel pop or snap?
- Able to weight bear after?

Examination

- Palpation – specific location of tenderness
 - Proximal Fibula
 - Deltoid/syndesmosis
 - Unstable - Surgery

- Mechanism of injury similar to ankle sprain
- Lateral process of talus
- Talar dome
Fracture to Arthroplasty: Management Strategies at the Ankle and Hindfoot

Examination
- Palpation – specific location of tenderness
 - Proximal fibula
 - Anterior process of calcaneus
 - Mechanism of injury similar to ankle sprain (inversion)
 - Lateral process of talus
 - Talar dome

Be Specific
- Several structures in small area:
 - Ant process calc
 - CC joint
 - Bifurcate lig
 - Sural n
 - Ext dig brevis

Examination
- Palpation – specific location of tenderness
 - Proximal fibula
 - Anterior process of calcaneus
 - Mechanism of injury similar to ankle sprain (inversion)
 - Lateral process of talus
 - Talar dome

Expectations
- Clear expectations aide in satisfaction
- Patients with depressive and anxiety symptoms have greater expectations and more expectations from foot and ankle surgery (Cody, 2017)
- “Discussions with surgeons about what to expect from surgery tend to be brief and poorly recalled.” (Cody, 2017)
Fracture to Arthroplasty: Management Strategies at the Ankle and Hindfoot

Talus - Anatomy

- 60% of talus is covered by articular cartilage
- 7 articular surfaces

Talus - Anatomy

- Vascular supply derived from artery of tarsal canal, deltoid artery, and sinus tarsi artery
- Decreased trabecular content of neck and oriented in different direction than bone of talar body and head
- Ankle and subtalar mobility along with medial column support depend on the anatomical integrity of talus

Background

- Hawkins Classification – talar neck fractures classified according to degree of displacement
 - Type I – IV (less severe to most severe)
- Lateral process fractures – (may present similar to ankle sprain)
- Talar body fractures
- Talar head fractures

Background

- Complications:
 - AVN
 - Posttraumatic arthritis
 - Varus deformity
 - Loss of motion

Outcomes – Talar Fractures

- Talus fractures described as early as 1608 by Fabrizius
- 1848 Syme reported 11 deaths out of 13 cases with open talus fractures
 - Advised primary amputation in those cases
- Despite modern advances, continue to be challenging fractures to manage
 - Osseous
 - Vascularity

Outcomes – Talar Fractures

- SR 2013 Talar neck fractures (Holverson)
 - AVN – 33%
 - Malunion – 17%
 - Nonunion – 5%
 - Post-traumatic arthritis – 68%
 - Self-reported outcomes
 - 30% Excellent
 - 50% fair or poor
- SR 2017 Talar neck fractures (Jordan)
 - AVN – 26%
 - Malunion – 12%
 - Nonunion – 4%
 - Post-traumatic arthritis
 - TC joint – 12%
 - STJ – 2%
 - Self-reported outcomes
 - 70% fair to good

Property of Albin, DiLiberto, Moon, not to be copied without permission
Outcomes — Osteochondral Lesions of Talus

- Occur in 50-70% of acute ankle sprains/fractures (Gianakos, 2017)
- Causes:
 - Trauma
 - Congenital
 - Ligamentous laxity
 - Steroid treatment
 - Embolic disease
 - Endocrine abnormalities
- Clinical presentation:
 - Persistent ankle pain after sprain
 - Generalized ankle swelling, stiffness, weakness associated with prolonged WB

Calcaneal Fractures

- Calcaneus most commonly fractured tarsal bone (Griffin, 2014)
 - 17,274 in US in 2010
 - Significant socio-economic burden
 - $28.5-$40.5 million/year
- Forces of 300% to 400% of BW transmitted through hindfoot (Balazs, 2014)
- Affect mostly young working persons (Eckstein, 2016)
- Poor clinical outcomes common after

Calcaneal Fractures

- Calcaneal fractures associated with other trauma (Renovell-Ferrer, 2017)
 - 40% of cases
 - 10-20% spine
 - 10% Bilateral calcaneal fractures

Outcomes — Calcaneus Fractures

- 2-8 yr fu (Van Tetering, 2004)
- SF-36
- Normative data
- Ortho
- Medical condition
 - Heart, lung, liver transplants, myocardial infarctions

Outcomes

- 244 fractures, 2 year follow-up
- Short Form 36 (SF-36), visual analogue scale (VAS), and a gait analogue score measured patient satisfaction
- Subtalar joint motion - percentage of uninjured limb
 - grouped into quartiles
- VAS, SF-36 (p < .0001), and the gait satisfaction score (p < .05) all increased significantly with increased STJ motion

Outcomes — Calcaneus Fractures
Outcomes – Calcaneus Fractures

- Younger patients (<39 yrs) have worse self-reported outcomes (Golos, 2015)
- Several factor influence outcomes (Eckstein, 2016)
 - Initial severity of soft tissue and concomitant injuries
 - Age
 - BMI
 - Diabetes
 - Nicotine use
- One study – 10% of patients required STJ arthrodesis due to post-traumatic arthritis within 14 months from surgery (Eckstein, 2016)

Outcomes – Calcaneus Fractures

- Outcomes of study with 20 yr follow-up after ORIF (Eckstein, 2016)
 - AOFAS hindfoot score
 - 55% had good to excellent results and 45% had fair to poor results
 - Average time off work – 7 months (range 2-12)
 - 30% required modified shoe wear
- Severity of injury significantly related to AOFAS scores and SF-36 scores (Renovell-Ferrer, 2017)
- Patients with psychiatric comorbidities presented worse health-related quality of life (Renovell-Ferrer, 2017)

Outcomes – Calcaneus Fractures

- Stiffness
 - TC
 - STJ
 - TN joint
 - FF
- Gait deviations (Hirschmuller, 2010)
 - Velocity correlates with AOFAS scores
 - Loss of postural control (Hirschmuller, 2010)
- Literature mixed regarding starting motion early vs late
 - Some advocate early
 - Other late due to infections

Background

- Complications
 - Deep wound infection (depends on institutional frx load – Pooce, 2008)
 - HWR
 - Superficial wound complications
 - Peroneal Tendon (Tufescu, 2001)
 - Limitations in ROM (approx 50% of STJ)
 - Non/Malunions
 - Persistent Pn
 - Early post-traumatic OA

Management Calcaneus Fractures

- Early post-traumatic arthritis of STJ
- Conservative tx: orthotic devices, modified shoe wear, anti-inflammatory medications, assistive devices
- Surgical tx: arthrodesis

Outcomes – Pilon Fractures

- High-energy axial type injuries to weight-bearing surface distal tibia
 - Low-energy rotational injuries
- Associated with joint surface comminution, displaced fracture fragments, soft tissue trauma
- Significantly poorer quality of life compared with age and gender-matched norms at 8 year follow-up (Cutillas-Ybarra, 2015)
 - Decreased TC joint ROM
 - Injured side – 30.7 ± 18.9°
 - Uninjured side – 60.7 ± 25.9°
 - VAS for pain during weightbearing 5.8 (range, 0-10)
- Significant decrease in mental component summary for patients who had decreased ankle motion compared with uninjured ankle
Outcomes – Pilon Fractures

- 43% of patients unable to return to work after pilon fx (Thomas-Hernandez, 2016)
- 26% (17 of 64) of patients develop post-traumatic arthritis at ave 7.7 months after surgical fixation (Lomax, 2015)
- 2 required arthrodesis within first post-op year
- Within 2-3 years, 40% of patients demonstrated radiographic ankle arthritis (Coetzee, 2010)

Outcomes – Weber Fractures

- Malleolar fractures are the most frequent type of ankle fractures presenting in 40-50% of patients with end-stage ankle arthritis
- Posttraumatic arthritis directly correlated with fracture pattern
 - Weber A incidence – 4%
 - Weber C incidence – 33%

Ankle Arthritis

- Rates of ankle arthritis (4%) low compared to hip (19%), knee (41%) (Coetzee, 2010)
- Primary arthritis of the knee is 70%, of the hip is 60% and of the ankle is 20% (Juang, 2017)
- Normal gait over level ground increases the load on the ankle jt to 5 times body weight (Thomas, 2003)
 - Med and lat facets accept rest of load with medial 2 times > lat facet
 - At 50% of gait cycle, talus is in neutral to slight DF position and contact area is greatest (Thomas, 2003)
- In PF, contact area diminishes by 13-18% (Thomas, 2003)
 - 1 mm of lateral displacement of the talus decreased tibiotalar articulation by 42%

Biomechanics and Treatment Approaches of Post-traumatic Ankle Arthritis

Frank DiLiberto PT, PhD, OCS, FAAOMPT
Assistant Professor, Department of Physical Therapy
Rosalind Franklin University of Medicine & Science

Study Sample

- Inclusion Criteria
 - Unilateral end stage ankle arthritis
 - Candidate for total ankle replacement

<table>
<thead>
<tr>
<th>Sample (N=12)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>XX</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>XX</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>XX</td>
</tr>
</tbody>
</table>
Procedures - Foot Model

• 3 Segments - Forefoot, Rearfoot, Tibia
• Self selected walking speed
 • Range:
 • Involved to uninvolved limb comparisons

Ankle Motion and Power

Dorsiflexion / Plantarflexion Motion

Inversion / Eversion Motion

Plantarflexion Power

Midfoot Motion and Power

Dorsiflexion / Plantarflexion Motion

Adduction / Abduction Motion

Plantarflexion Power

Ankle ROM During Walking

(DF / PF ROM°)

Early Stance Midstance Terminal Stance

Ankle ROM During Walking

(Inv / Ev ROM°)

Early Stance Midstance Terminal Stance

Ankle Power
Fracture to Arthroplasty: Management Strategies at the Ankle and Hindfoot

Midfoot ROM During Walking (DF / PF ROM°)

Early Stance Midstance Terminal Stance

Midfoot Power

Early Stance Midstance Terminal Stance

Midfoot ROM During Walking (ADD / ABD ROM°)

Summary - Ankle and Midfoot Biomechanics

Ankle Midfoot

Midfoot Power

Clinical Presentation

- Perceived Function / Quality of Life
- Foot and Ankle Ability Measure
- Lower Extremity Functional Scale
- Short-Form 36

- Pain
- Stiffness
- Imbalance / Falls

Treatment Approaches

Property of Albin, DiLiberto, Moon, not to be copied without permission
Pain - Assessment

- Pain
 - Visual Analog Scale
 - Numeric Pain Ring Scale
 - Pressure pain thresholds

Pain - Intervention

- Alleviating
 - Joint mobilization
 - Conditioned pain modulation
- Accommodative
 - Bracing
 - Footwear modification
 - Weight management
 - Activity Strategies

Stiffness and Strength

- ROM
 - Maintain as possible
 - Low load repetitive motion
- Strength
 - NWB and WB
 - Intrinsic / extrinsic foot muscles
 - Proximal strengthening
 - Hip extension for propulsion

Gait / Imbalance - Assessment

- Gait
 - Six minute walk test
 - Slower, decreased stride length
- Imbalance
 - Single Leg Stance
 - Sit to stand
 - Four Square Test

Summary - Treatments

- Pain management
 - Accommodative > Alleviating
- Stiffness and Strengthening
 - Maintain ROM, chondral training
 - Prehab: intrinsic / extrinsic foot muscles + proximal muscles
- Gait / Imbalance
 - Safety, static and dynamic training, adaptive strategies
 - Contralateral leg
Rehabilitation and Outcomes Following Total Ankle Arthroplasty

Frank DiLiberto PT, PhD, OCS, FAAOMPT
Assistant Professor, Department of Physical Therapy
Rosalind Franklin University of Medicine & Science

Factors Affecting Outcomes

Patient
- Co-morbidities
- BMI
- Psychosocial
- Pre-operative status
 - ROM
 - Strength

Operative
- Candidate selection
- Surgeon experience
- Implant Type
- Complications

Factors Affecting Outcomes

- Postoperative Management
- Weightbearing progression
- Compression wrapping
- Physical Therapy?
 - Not always the standard of care

Study Design

- Prospective cohort study
 - 6 month follow up
 - Inclusion Criteria
 - Unilateral end stage ankle arthritis
 - Candidate for total ankle replacement
 - Two fellowship trained foot & ankle surgeons
 - Implant type
 - Postoperative management was not controlled

Study Sample

<table>
<thead>
<tr>
<th>Sample (N=12)</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>XX</td>
</tr>
<tr>
<td>Gender (% male)</td>
<td>XX</td>
</tr>
<tr>
<td>Body Mass Index (lb/in²)</td>
<td>XX</td>
</tr>
<tr>
<td>Length of hospital stay (days)</td>
<td>XX</td>
</tr>
<tr>
<td>PT Sessions (visits)</td>
<td>XX</td>
</tr>
<tr>
<td>PT Duration (days)</td>
<td>XX</td>
</tr>
</tbody>
</table>
Outcomes

- Pre to Post Comparisons
 - Pain
 - Foot and ankle Ability Measure
 - Six Minute Walk Test
 - Isokinetic Ankle Strength
 - Ankle and Midfoot Biomechanics During Walking

Postoperative Management

- Weightbearing progression
- Compression Wrapping
- PT Interventions

Outcomes – 6 Months

- Pain
- Foot and Ankle Ability Measure
- Six Minute Walk Test

Outcomes – 6 months

- Ankle ROM
- Ankle Strength
Outcomes – 6 months
Ankle ROM During Walking Ankle Power

Outcomes – 6 months
Midfoot ROM During Walking Midfoot Power

Outcomes - Midterm
• Pain
• Functional outcome measures
• Gait

Outcomes - Midterm
• Ankle ROM
• Ankle Power During Gait
• Balance

Outcomes
• Implant Survival

Case Study: From Fracture to TAA
Stephanie Albin
Assistant Professor
Regis University School of Physical Therapy
Talus Fracture Case Study

- 20 y/o male S/P Right talar body ORIF after fall climbing fixed on 3/1/2016.
- Student at University of Utah.
- Comminuted fracture of posteromedial portion of talus including both colliculi on either side of the FHL tendon with displaced fragments of both talocrural and subtalar joint.
- No significant medical hx except for asthma.

Case Study – Talus Fracture

- Post-operative plan:
 - NWB for 12 weeks
 - 2 weeks post-op sutures removed and placed in walking boot.

Case Study – Talus Fracture

- Evaluation 5/23/2016:
 - Chief Complaint:
 - Decreased activity (would like to return to hiking, climbing, golfing and running).
 - Non-compliant with WB status per MD.
 - Pn 7/10 at worst, 0/10 at best, and 0/10 currently.
 - Incision – closed and no signs of infection.
 - Off all pain medications.
 - Figure of 8:
 - Left: 52 cm
 - Right: 53 cm
 - ROM:
 - DF to PF Left – 6 to 38
 - DF to PF Right – 0 to 21

Case Study – Talus Fracture

- Patient is allowed to begin WB at 10 weeks post-op since has been non-compliant in boot per MD.
- Protocol:
 - Start at 25% WB and increase 25% every 7 days in boot.
 - Once full WB for 2 weeks may slowly wean OOB (over approximately 7 days).

Case Study – Talus Fracture

- Patient came for 3 visits over 4 week period of time.
 - Patient education regarding chondral issues and long term outcomes.
 - Focused on chondral training, ROM, gait training, and balance.
 - Patient continued to be non-compliant.
 - Started rock climbing at 12 weeks post-op.
 - Did not attend f/u visit.
Case Study – Talus Fracture

- 6 months post-op patient called to schedule another visit secondary to increased pain levels and increasing stiffness
- Re-eval
 - Pain 9/10 at worst, 2/10 at best and 4/10 currently
 - Able to go up stairs normally, but difficulty going down stairs secondary to pain and stiffness
 - Pain at terminal stance phase of gait
 - Increased pain in AM for approximately 5 min
 - Decreased pain if supinates

- Potential diagnoses?
 - Peroneal tendonitis
 - Subtalar joint OA

- Re-eval (cont)
 - Swelling and TTP post and inferior to lateral malleolus
 - Eversion strength 4/5 with pain
 - Gastroc strength 4/5 with pain
 - DF and Inversion strength 5/5 pain free

- SLS:
 - Left – 10 sec FO
 - Right – 6 sec and stopped secondary to pain
 - Knee to wall:
 - Left -7 cm
 - Right -3 cm
 - Antalgic gait pattern, decreased loading of midfoot and forefoot

Case Study – Talus Fracture

- 6 months post-op patient called to schedule another visit secondary to increased pain levels and increasing stiffness
- Re-eval
 - Pain 9/10 at worst, 2/10 at best and 4/10 currently
 - Able to go up stairs normally, but difficulty going down stairs secondary to pain and stiffness
 - Pain at terminal stance phase of gait
 - Increased pain in AM for approximately 5 min
 - Decreased pain if supinates

- Potential diagnoses?
 - Peroneal tendonitis
 - Subtalar joint OA

- Re-eval (cont)
 - Swelling and TTP post and inferior to lateral malleolus
 - Eversion strength 4/5 with pain
 - Gastroc strength 4/5 with pain
 - DF and Inversion strength 5/5 pain free

- SLS:
 - Left – 10 sec FO
 - Right – 6 sec and stopped secondary to pain
 - Knee to wall:
 - Left -7 cm
 - Right -3 cm
 - Antalgic gait pattern, decreased loading of midfoot and forefoot

Rehabilitation

- First priority is PATIENT EDUCATION
 - Should hear from doctor first
 - Set realistic expectations
 - Life changing
 - Explain how their fracture is unique
- ROM – caution with early forced DF due to anatomy of talus
- Swelling control (compression stocking)
- Chondral Training, Chondral Training, Chondral Training, Chondral Training (LOW LOAD, HIGH REPETITION)
- Pt education re: activity modification
- Usually don’t start WB until 8-12 wks po
 - Strengthen LE

Talus Fracture - Rehabilitation

- ROM – caution with early forced DF due to anatomy of talus
- Swelling control (compression stocking)
- Chondral Training, Chondral Training, Chondral Training, Chondral Training (LOW LOAD, HIGH REPETITION)
- Pt education re: activity modification
- Usually don’t start WB until 8-12 wks po
 - Strengthen LE

Rehabilitation

- First priority is PATIENT EDUCATION
 - Should hear from doctor first
 - Set realistic expectations
 - Life changing
 - Explain how their fracture is unique
Failed Conservative Treatment

- 69 y/o male with significant R post-traumatic arthritis of TC and STJ
- 12 weeks post Salto-Talaris TAA, STJ arthrodesis and TAL
- Self-employed, has worked from home since time of surgery
- NWB for 6 weeks post-op
 - Progressed 25% every 7 days as tolerated in walking boot
 - Weaned OOB once FWB for 2 weeks
- PMH: Significant for diabetes and high BP
- Goals:
 - Hiking
 - Biking
 - Walking for ex
 - One month hiking trip in Alaska 8 month post-op

Tests and Measures

- Active DF - 2° (knee extended)
- Active PF - 8° (knee extended)
- Inv/eversion not assessed
- Incision – closed and no signs of infection
- NPRS pn – 0/10 best, 0/10 current, 0/10 worst
- LEFS – 35
- Balance and proprio
 - SLS 1 sec EO affected side
 - SLS 5 sec EO unaffected side

Evaluation and Prognosis

- Pt full weight bearing and OOB 100% of the day with no increase in pH
- Felt nervous about falling in the community and would use cane for balance
- Calf strength no test secondary to Achilles lengthening
- Prognosis – overall good; however due to STJ fusion discussed some potential difficulties with hiking on uneven ground and balance
- Seen total of 8 visits over 19 weeks

Intervention

- Initial visit focus
 - AROM (PF and DF)
 - Balance and proprio B – tandem stance (EO, EC)
 - Gait training
 - Initiated gentle gastroc strengthening 8 – added stationary bike for home
- 2 week follow-up
 - AROM improved from 10° to 19° of TC joint
 - Increased gastroc strengthening ecc
 - Balance – progressed to SLS activities and 8 stance on uneven surface
 - Increased functional strengthening
 - HEP – 4-5 exercises max

Intervention (continued)

- After one month – added independent walking program on treadmill and progressed to incline over next month
- Added walking on uneven surfaces on flat trails
- At 5 months post-op
 - Continued to progress SLS on uneven surfaces
 - Continued to progress gastroc strengthening
- At 6 months post-op
 - Began light hiking and progressed as tolerated in preparation for trip to Alaska

Outcomes

- Last visit - 8 month post-op prior to Alaska trip
 - Total AROM of TC joint 23°
 - Able to perform 10 uni HR
 - LEFS improved from 35 to 64
 - SLS improved to 10 sec B
 - Gait - Pedar
References: