Rehabilitation of Transversus Abdominis, Multifidus, and Pelvic Floor Muscles Using Real Time Ultrasound

Scott Epsley
PT, Graduate Certificate Sports Physiotherapy
Board Certified Sports Physical Therapist Specialist
RMSK (Registered MSK Sonographer)

Director of Physiotherapy and Clinical Diagnostics
Philadelphia 76ers

Presented by: Megan Poll PT, DPT, OCS
Georgetown University Sports Medicine Div. 1 NCAA Sports
meganpoll@gmail.com

Copyright Scott Epsley, 2017.
Muscle Assessment

1. Cognitive Activation - Contract / Relax
 - Hold / Breathe
 - Hold Under Load

2. Automatic Activation - Supine
 - ASLR / Isometric / Active Movement
 - Sitting / Standing tasks

3. Functional Activation - Functional tasks
 - Walking / Leg Press/
 Reformer
Transversus / Obliques
Transversus / Obliques

Evidence:

• *O’Sullivan et al (1997)* – TrA and MF retraining decreased back pain @ thirty months
• *O’Sullivan et al (1998)* – Isolated abdominal hollowing can alter automatic activation patterns of IO and RA in LBP patients
• *Hodges et al (2000)* – TrA activity preceded arm movements
• Hides et al (2001) – TrA retraining led to decreased LBP recurrence at 1 year from 84% to 30%
• *Richardson et al (2002)* – TrA decreased laxity of SIJ more than global contraction
Transversus / Obliques

Evidence Cont:

• *Ferreira et al (2004)* – TrA thickness with contraction is correlated to LBP
• *Kermode (2004)* – Co-contraction of TrA and IO led to a poor outcome in a pro soccer player
• *Hides et al (2007)* – TrA thickness inc. more than IO in simulated weight bearing in normals
• *Teyhen et al (2009)* - TrA and IO thickness inc. 24% and 11% in asymptomatics compared with 6% and 6% in LBP patients during ASLR
• *Hides et al (2010)* – Back pain patients show less change in abdominal CSA with hollowing than non-LBP
Transversus / Obliques

• (Saunders et al, 2004)
• At walking speeds TrA contraction was tonic
• As speed increases, TrA becomes phasic and is timed with heel strike
• Respiration is timed with heel strike
• Runners with back pain:
 - altered respiratory patterns
 - loss of timing of TrA with heel strike
 - Increase in tonic activation of obliques
Transversus / Obliques
Transversus / Obliques

Breathing:
• Hodges & Gandevia (2000)
• Diaphragm has a respiratory and stability function
Transversus / Obliques

Imaging:
- Linear Probe: 5-10 MHz
- Patient Supine in Crook Lying
- Just Above and Medial to Iliac crest
Transversus / Obliques

• Cognitive:
 - “Draw umbilicus towards spine without flattening your back or sucking in under your rib cage”
 - “Gently draw your stomach is as if putting on a tight pair of jeans”
 - “Bring your pelvic bones together”

• Automatic:
 - Foot Lift and Extend 1” off Bed
 - ASLR
 - Resisted KF / KE isometric contraction

• Functional:
 - Leg Press
 - Resisted Arm Movements
 - Pilates reformer

Copyright Scott Epsley, 2017.
Transversus / Obliques

a) Normal at rest
 - ratio of EO, IO and TrA maintained
b) Normal Contraction
 - has both fascial glide and increase in TrA thickness without IO and EO
c) Pre-contracted
 - little glide or thickness increase despite appearance of hypertrophied TrA relative to IO
Transversus / Obliques

d) En-block IO/TrA with poor slide
 - IO and TrA activate together with increase in thickness of both but poor fascial glide

e) IO dominant
 - very little TrA thickness increase or glide, initiates and dominates with IO

f) Loss of fascial tension (post partum) altering length tension curve
 - unable to develop fascial tension but muscle may increase in thickness. Alternatively the length tension curve may be so skewed that little change is noted.
Transversus / Oblique Muscles:

- **a) Normal at Rest**
- **b) Normal Contraction**
- **c) Pre-contracted**
- **d) En-block TrA and IO**
- **e) IO dominant**
- **f) Loss of fascial tension**

Copyright Scott Epsley, 2017.
Transversus / Obliques

Potential Pitfalls in measuring TrA thickness:
- Ceph / Caud location of transducer as muscle thickness varies considerably
- Transducer Pressure – 10mm of pressure will change thickness considerably

(Whittaker and Stokes, 2011)
Multifidus
Multifidus

Evidence:
- *Hides et al (1996)* – MF recovery after back pain is not spontaneous
- *Barker et al (2004)* – Psoas and MF atrophy ipsilateral to back pain
- *MacDonald et al (2006)* – Specific retraining of deep MF has scientific credibility
Multifidus

Evidence Cont:
• *Kiesel et al (2007)* – Muscle thickness changes on US correlated to EMG on prone arm raise task
• *Brenner et al (2007)* – US used to measure improvement in MF activation post manip that was maintained at 24 hours
• *Hides et al (2008)* – Atrophy in cricketer’s responded to specific MF retraining, and resulted in decreased pain
• *Fernandez-des-las-penas et al (2008)* – Chronic neck pain patients had dec. MF CSA C3-6 on US compared to controls
• *Gildea et al (2013)* – CSA of lumbar MF smaller in ballet dancers with back and hip pain, though not nec. Ipsilateral to symptoms.
Multifidus

- (Herbert et al, 2008) MF contraction improvement using RUSI biofeedback was retained better at 3-4 months with delayed variable feedback
- (Hides et al, 2011) Patients with a good TrA contraction 4.5x more likely to get a good MF contraction
Multifidus

Cross Sectional Imaging:
• Curvilinear Probe : 3.5 – 6 MHz
• Patient prone with pillow under stomach
• Perpendicular to Spinous Process
Multifidus

• Cognitive
 - “Imagine pushing your tailbone toward ceiling but without moving your spine”
 - “Just take the weight of your leg but don’t lift your leg”
 - “Imagine sucking your hip back into the socket without moving your spine”

• Automatic
 - Leg Lift (ipsi / contralat)
 - Contralateral arm lift prone in bilateral shoulder flexion
 - Seated posture correction “Lift your tailbone”

• Functional
 - Standing weight shift

Copyright Scott Epsley, 2017.
Multifidus

Longitudinal Imaging:
- Curvilinear Probe – 3.5 or 6MHz
- Patient prone with pillow under stomach
- Parallel to Spinous Process
- Angled slightly towards spine
Multifidus

Potential Pitfalls in measuring MF CSA
- Adjacent ES contraction may increase PA volume of MF *(Whittaker and Stokes, 2011)*
Pathology

Spondylolisthesis:
- May appear as a “step” between vertebrae
- Cephalad vertebrae (L4) appears lower (anterolisthesis)
- NOT diagnostic but should raise suspicion
Pelvic Floor

FIGURE 11.13 Muscles of the Pelvic Floor (female).

bladder

pelvic floor

Copyright Scott Epsley, 2017.
Pelvic Floor

Evidence:

- *Thompson et al (2003)* – Three patterns of levator plate movement noted on RTUS
- *Sherburn et al (2005)* – RTUS valid and reliable compared to vaginal palpation. For PF function
- *Thompson et al (2006)* – Women with SI showed global abdominal recruitment rather than preferential PF
- *Whittaker et al (2007)* – Excessive depression may indicate pelvic organ dysfunction or laxity
Pelvic Floor

Imaging (Transverse Plane):
• Curvilinear Probe – 2 MHz
• Patient Supine in Crook Lying, Perch Sitting or Standing
• Inferior to Umbilicus, Angled 50-70 degrees
• Point Probe Towards Pubic Symphysis
Pelvic Floor

• **Cognitive**
 - “Draw your perineum up”
 - “Draw your testicles up”
 - “Imagine stopping yourself from peeing”
 - “Imagine cutting off gas”

• **Automatic**
 - SLR

• **Functional**
 - Marching on the spot
 - Sit to Stand
Pelvic Floor

• Normal Elevation
 – Good PF contraction

• Excessive Elevation
 – Possible Pelvic Organ Dysfunction

• No Elevation
 – Isometric PF contraction against inc. IAP
 – No PF contraction

• Depression
 – Increase in IAP / Valsalva
 – Pelvic Organ Dysfunction

(Thompson et al, 2003)
Copyright Scott Epsley, 2017.
Pelvic Floor

Normal Levator Plate Elevation

No Levator Plate Elevation

Excessive Levator Plate Elevation

Levator Plate Depression

Copyright Scott Epsley, 2017.
Pelvic Floor

Imaging (Sagittal Plane):
• Curvilinear Probe – 2 MHz
• Patient Supine in Crook Lying, Perch Sitting or Standing
• Just above Pubic Symphysis
• Angle probe slightly posteriorly
• NOTE:
 • Uterus above
 • Bladder Neck
 • Rectum posteriorly

Adapted from Whittaker et al, 2007
Copyright Scott Epsley, 2017.
Pelvic Floor

Sagittal Plane

Copyright Scott Epsley, 2017.
Pelvic Floor

Potential Pitfalls in measuring PF contraction
- A small change (as little as 10 deg) in transducer angle will significantly alter the depth of the PF
(Whittaker and Stokes, 2011)
Questions?