Diagnosis: What is it?

- Process and end-result of evaluating information obtained from the examination, which the clinician then organizes into defined:
 - clusters, syndromes, or categories to help determine the most appropriate intervention strategies.

Guide to Physical Therapist Practice, APTA

Key Metrics for Dx Accuracy

- Diagnostic Accuracy values:
 - **Sensitivity**
 - **Specificity**
 - PPV: Predictive value of a positive test
 - NPV: Predictive value of a negative test
 - LR+: Positive likelihood ratio
 - LR-: Negative likelihood ratio

BLUF

Sensitivity = with condition & test + / all pts with condition
True positive / true positive + false negative

a / a + c

Specificity = w/o condition & test - / all pts w/o condition
True negative / true negative + false positive
d / b + d

Sensitivity and Specificity

- Sensitivity
 - SnNOut = When Sn is high, a Negative test rules Out the disease

- Specificity (SpPIn)
 - SpPIn = When Sp is high, a Positive test rules In the disease.

- Interpretation:
 - Indicates if a test ↓s or ↑s disease probability
 - BUT: No set cut-off to quantify shift in probability
Diagnosis of Shoulder Pain
Lori Michener, PhD, PT, ATC, SCS, FAPTA

PPV = proportion of pts with a + test, who have the disease
NPV = proportion of patients with – test, who do not have
the disease
PREVALENCE dependent!! Can be a more unstable estimate

Likelihood Ratios
• More helpful for Dx
• Indicate by how much a given diagnostic test result will ↓ or ↑ the probability of the disease.
• Quantify shifts in probability of the diagnosis/disorder for an individual patient
 Ex: +LR= 5: a patient with a + test is 5x more likely in a patient with the disease as compared to a
 patient without the disease
• Minimal affect of prevalence

Recommendation: Dx
Screen (Rule/ Out)
– Sensitivity: SnNOut
 * Sn ≥ 80%
– Likelihood ratio (→ LR)
 * → LR ≤ 0.5

Confirm (Rule/ IN)
– Specificity: SpPIn
 * Sp ≥ 80%
– +Likelihood ratio (+LR)
 * +LR ≥ 2.0

Likelihood Ratio

<table>
<thead>
<tr>
<th>“+”</th>
<th>“—”</th>
</tr>
</thead>
<tbody>
<tr>
<td>>10</td>
<td><0.1</td>
</tr>
<tr>
<td>5 - 10</td>
<td>0.1 - 0.2</td>
</tr>
<tr>
<td>2 - 5</td>
<td>0.5 - 0.2</td>
</tr>
<tr>
<td>1 - 2</td>
<td>0.5 - 1</td>
</tr>
</tbody>
</table>

Interpretation

Large & often conclusive changes from pre-test to post-test probability
Moderate shifts in pre-test to post-test probability
Small but sometimes important changes in probability
Small and rarely important changes in probability
Diagnosis of Shoulder Pain
Lori Michener, PhD, PT, ATC, SCS, FAPTA

Rotator Cuff Disease
Heterogeneous pathology

- Subacromial Pain Syndrome (SPS)
- RCD - includes SPS, PT-RCT, FT-RCT

How do we diagnosis or classify for treatment?

Diagnosis of Rotator Cuff Disease

Rotator cuff disease
- Full-thickness RC tear
- Partial thickness RC tear
- Bursitis
- Tendinitis
- Tendinopathy
- Subacromial impingement

FT- RC tear

Same general approach, but impairments and irritability considered for staged approach for rehabilitation

Subacromial pain syndrome

Dx SA pain - Systematic Reviews

Confirm SA pain (R/In) – single tests
1- Painful arc
2- Resisted ER (ERRT) – pain or weakness
3- Full Can
4- Drop Arm

Screen Out SA pain (R/Out) – single tests
1- Painful arc
2- Resisted ER (ERRT) – pain or weakness
3- Hawkins
4- Neer
5- Full Can
6- Empty/ Jobe Can

Painful Arc

- During elevation of arm
 - Pain / sx: 60° to 120°
 - Associated with SAIS & RCT
 - Pain / sx: 160/170 ° - 180°
 - Associated with AC joint, and/or SAIS / RC tears (RC tears and SAIS: more common is pain in the mid ROM)
Hawkin’s Test
- Stabilize scapula, place arm in 90° flexion & then max IR (passive end ROM)
- Criteria: pain / Sx at end ROM of test
- Single test:
 - only good to R/Out
 - NOT R/In

Neer’s Test
- Stabilize scapula, elevate passively as far as possible
- Criteria: pain / Sx at end ROM of test
- Single test:
 - only good to R/Out
 - NOT R/In

Empty Can/Jobe
- Scapular plane elevation
- Resist humeral elevation
- +: pain or /& weakness

Full Can
- Empty can: humeral IR
- Full can: humeral ER

External rotation resistance test (ERRT)
- Shoulder neutral, elbow flexed 90°
- Apply isometric resistance to distal forearm, while pt attempts to ER shoulder
- “+”: pain OR weak
 - Markedly weak: FT-RCT

Drop Arm Test
- Ask pt to abduct to 90°, ask pt to lower arm slowly
- “+” test: pain & difficulty lowering arm slowly

Speed’s Test
- Biceps pathology / labrum / SAIS
- Resist sh. flex w/ elbow ext & forearm supinated
- +: ant/ sup shoulder pain
- NOT useful to RIn or ROut any pathology

Park RB, et al: JGG, 2005._
Diagnosis of Shoulder Pain

Lori Michener, PhD, PT, ATC, SCS, FAPTA

Diagnosis

Shoulder Pain

Lori Michener, PhD, PT, ATC, SCS, FAPTA

4/18/2017

Combo of Tests: SA Pain

3/3 tests: (Park HB, JBJS; 2005)

- Hawkins, Painful arc, ER resistance (Pain/Weak)
 - All 3+: +LR of 10.56
 - All 3-: −LR of 0.17

3/5 tests: (Michener LA, APMR, 2009)

- Hawkins, Neer, Painful arc, Empty can, ER resistance
 - If ≥ 3+ / 5: +LR of 2.93
 - If < 3+/ 5: −LR of 0.34

Posterior Impingement

- Posterior / Internal impingement
- Compression of the tendons between the posterior glenoid rim and the humeral head
- Overhead athletes
- Is this a potential in non-athletes??

Posterior Internal Impingement

- Impingement of the internal/deep aspect of RC tendons on posterior superior edge of the glenoid
- May be associated with anterior instability
- Relocation test positive for reduction in POSTERIOR pain

Rotator Cuff Tears

- Partial Thickness Tears
 - Impingement syndrome category
- Full Thickness Tears
 - Tears classified as (DeOrio & Cofield, 1984)
 - Small: < 1 cm
 - Medium: 1 – 3 cm
 - Large: 3 – 5 cm
 - Massive: > 5 cm

Dx FT-RCT - Syst Reviews

Confirm FT-RCT

(R/In) – single tests
1- Painful arc
2- Resisted ER – pain or weak
3- ER lag test – supraspinatus infraspinatus
4- IR lag & Lift-off subscapularis
5- Drop arm
6- Atrophy of infraspinatus
7- Belly off – Subscapularis

Screen Out FT-RCT

(R/Out) – single tests
1- Resisted ER (ERRT) – pain or weakness
2- IR lag & Lift-off subscapularis
3- Empty Can
4- Full Can

History: Age ≥ 60/65yo and c/o night pain

USC Division of Biokinesiology and Physical Therapy

USC Division of Biokinesiology and Physical Therapy

USC Division of Biokinesiology and Physical Therapy

USC Division of Biokinesiology and Physical Therapy
Lori Michener, PhD, PT, ATC, SCS, FAPTA

Diagnosis of Shoulder Pain

Lift Off and Lag Test
- Subscapularis tear
- Hand at sacrum/LB;
- Lift-off: ask pt to lift hand away from the back
- Lag: examiner positions hand off the back and asks to hold
- "+": inability to “lift off” or “lags” back

Empty Can
- Empty can: humeral IR
- Full can: humeral ER
- Resist humeral elevation
- Positive: pl or /& weakness

Full Can

External Rotation Lag Sign
- At 0 deg abd, 90 deg elbow flex; passive ER & ask patient to hold
- "+": “lags” back to less than full ER

Combination of Tests: FT- RCT
 - >65yo, ER weak (ERRT), night pain
 - All 3 +: R/In +LR: 9.84
 - All 3 -: R/Out - LR: 0.54
- Test Combo (Park HB, et al; JBJS, 2005)
 - 3 Tests: Drop arm, Painful arc, ERRT
 - All 3 tests +: R/In +LR: 15.57
 - All 3 tests -: R/Out - LR: 0.16

Glenohumeral Instability
- Degree of Instability:
 - Subluxation
 - Dislocation
- Other pathology?

Labral Tear
- Bankart: Ant-inf labral tear
- More types – more about that later
Hill-Sach’s Lesion

- Humeral head defect of the post-lateral HH
- Reverse Hill-sach’s: ant-medial defect with posterior dis/instability

GH Instability: Special Tests

- Anterior instability
 - Apprehension (anterior)
 - Anterior release
 - Relocation
 - Load and shift
- Posterior instability:
 - Load and shift
 - Posterior apprehension
- Inferior / multidirectional instability: Sulcus
- R/Out or In additional Dx: labral tears, SAIS
- Lift-off test with ant/inf instability

Sulcus Test

- Multidirectional instability
- Sitting: traction on humerus at elbow
 - “+”: space btw acromion & HH as compared bilaterally
- Graded: 1+ - 3+
 (Hawkins et al, Orthop Trans 12:727-8, 1988)

Apprehension Test

- Ant instability
 - Supine or standing: first abduct to 90°, then gradually ER shoulder
 - “+” test:
 - Apprehension (visual expression or by pulling arm out of that position)
 - Sx reproduction
 (T’Jonk L et al, 2001)

Anterior Release

Apply a posterior force, as arm is place in 90 / 90 position

Release the force
“+”: apprehension / pain

Shoulder Relocation

Arm in 90 / 90 position, apply an ant force to HH

Apply post. force (relocation)
“+”: ↑ed apprehension with ant force & ↓ with post force
Load and Shift

- Anterior / posterior instability and glenoid labral tears
- "Load" the humerus into the glenoid, then ant/post translate
- "+": amount of translation (3 grade system, Magee); click for labral tear

Posterior Apprehension Test

- Posterior GH instability
- Supine: stabilize the scapula; flex to 90°, horizontal add & IR, then axially load humerus post.
- "+": apprehension or pain/ Sx

No Dx Accuracy evidence

Dx GH instability - Systematic Review

Hegedus EJ, BMJ, 2012

Confirm GH Instability (R/in) – single tests
1- Apprehension +LR: 17.21
2- Relocation +LR: 5.48
3- Surprise/ Ant Release +LR: 5.42

NOTE: All 3 had high +LR in Meta-analysis

Screen GH Instability (R/out) – single tests
1- Apprehension - LR: 0.39
2- Relocation - LR: 0.55
3- Surprise/ Ant Release - LR: 0.25

NOTE: All 3 had low -LR in Meta-analysis

Combo of Tests: Anterior Instability

- Test Combo (Farber AJ, JBJS Am, 2006)
 Apprehension AND Relocation
 Both+: R/in +LR: 39.68
 Both -: R/out - LR: 0.19

GH Instability: Special Tests

- Posterior instability:
 - Load and shift
 - Posterior apprehension
- Inferior / multidirectional instability
 - Sulcus
- No Dx accuracy evidence

Glenoid Labral Tears

- Tear of glenoid labrum
- Various lesion types
 - Bankart: ant / inf glenoid labrum
 - SLAP: sup. glenoid labral ant. to post.
 - Other: any other location
- May be associated with GH instability, SAIS, biceps tendinitis
Diagnosis of Shoulder Pain

Lori Michener, PhD, PT, ATC, SCS, FAPTA

SLAP lesions - Types

- 4 Types defined (Snyder SJ et al, Arthroscopy, 1990)
 - **Type I** – fraying & degeneration, no biceps involvement. Not considered a source of shoulder symptoms
 - **Type II** – degeneration & fraying with detachment of the superior biceps-labral complex
 - **Type III** – bucket-handle tear of superior labrum with displacement of labrum, intact biceps tendon
 - **Type IV** – bucket-handle tear that involves the biceps tendon

Dx SLAP: Special Tests

- Last count: 26 tests
 - Anterior Slide
 - Active compression
 - Yeargason’s
 - Crank
 - Clunk
 - Compression-Rot.
 - Biceps load I & II
 - Whipple
 - Pain provocation
 - Dynamic Labral Shear Test (DLST)
 - MODIFIED DLST
 - Apprehension(huh?)
 - Relocation (huh?)
 - Passive distraction
 - Passive compression
 - And MORE.....

Dx SLAP: History

History of popping, clicking or catching as a stand-alone finding – **NOT diagnostic of a SLAP lesion**

(Walsworth MK, 2008; Michener LA, 2011; McFarland EJ, 2002)

Dx SLAP: Physical Exam

1- Bicipital groove tenderness – **NOT diagnostic of a SLAP lesion**

(Meta-analysis: Hegedus EJ, 2012)

Active Compression (O’Brien’s)

- Horiz add to ~ 10°, max IR resist elevation; then repeat in max ER
- “+”: ↑ed pain w/ hum IR & ↓ed w/ ER for labral & AC jt; pain *location* indicates Dx

Active Compression

O’Brien results

- **n = 318**, orthopedic surgeons
- Labral tear Dx accuracy:
 - Sensitivity: 100% Specificity: 98%
 - LR: 0.01 + LR: 21
- These numbers look great, BUT: Pt. Selection: controls were knee patients ?

However, when O’Brien’s Test was examined by others and Meta-Analysis....

- NOT diagnostic – NOT good to R/in or R/Out as an individual test (Hedegus E, 2012)

SLAP Diagnosis

CONFIRM (R/In)

1. Anterior Slide
 (Meta-analysis: Hegedus EJ, 2012)

2. Yergason’s test
 (Meta-analysis: Hegedus EJ, 2012)

3. Compression-rotation:
 (Meta-analysis: Hegedus EJ, 2012)

4. Pain Provocation
 (Mimori K, 1999; Parentis MA, 2006)
 + test: more painful / painful with pronation vs. supination

5. Anterior Apprehension
 (Oh JH, 2008; Nakagawa S, 2005; Guanche CA, 2003; Fowler, 2010)
Diagnosis of Shoulder Pain
Lori Michener, PhD, PT, ATC, SCS, FAPTA

SLAP Diagnosis

CONFIRM (R/In)
6- Biceps Load II
(Oh JH, 2008; Cook C, 2012; Kim SH, 2001)

Screen (RuleOut)
1- Pain Provocation
(Mimori K, 1999; Parentis MA, 2006)

+ test: more painful / painful with pronation vs. supination

Dx: SLAP Tears

Confirm (R/In)
Meta-Analysis
Anterior Slide
Yergason’s
Compression - Rotation
Multiple single studies
Pain provocation
Anterior Apprehension
Biceps Load II

Screen (R/Out)
Meta-Analysis
NONE
Multiple single studies
Pain provocation

SLAP – Combo of Hx and Tests

** ONLY single studies – use caution **
• Hx of Pop Click & Catch + Anterior Slide
 • Useful to RIn (Sp=93%, +LR=6.0) (Michener LA, 2011)
• NO Hx Pop, Click, Catch + neg Ant. Slide
 • ROut (Sn=82%, -LR=0.33) (Walsworth MK, 2008)
• Passive Distraction + Active Compression
 • Useful to ROut (Sn=70%, -LR=0.11)
 • Useful to RIn (Sp=92%, +LR=7.0) (Schlechter JA, 2009)
• Compression-rot. + Speed + Apprehension
 • Useful to RIn (Sp=92%, +LR=3.13) (Oh JH, 2008)

Labral Tear of any type

Crank Test

• Elevate: 160° scaption
• Axial load humerus
• Max IR & ER
• “+”: reproduction of Sx or pain
 (with or w/o click)
Diagnosis of Shoulder Pain

Lori Michener, PhD, PT, ATC, SCS, FAPTA

Dx: Labral Tears

- Crank Test (Meta-analysis: Hegedus EJ, 2012)
 - R/In: Sp=73%, +LR = 2.44 Likely useful
 - R/Out: Sn=57%, - LR = 0.51 Likely/ Maybe

Combinations:

- Relocation + Apprehension
 - RIn (Sp=93%, +LR=5.43) (Guanche CA, 2003)
- Anterior Slide + Crank
 - RIn (Sp=91%, +LR=3.75) (Walsworth MK, 2008)
- NO Hx Pop, Click, Catch + neg Ant. Slide
 - ROut (Sn=82%, -LR=0.33) (Walsworth MK, 2008)

Pain may be local and/or referred (C5,6)
- Normal radiographs
- Spontaneous loss of motion
- Passive ROM loss: “global” limitation
 - 2 or more planes of > 25%; ER ≥ 50% loss
 - Comorbidities. IDDM?
 - S/P surgery, immobilization, or self-immob?
 - Underlying cause?
 - Rotator cuff tear/SAIS, Idiopathic, Thoracic kyphosis – change in scapula position

Questions?