SUMMARY OF RECOMMENDATIONS*

DIAGNOSIS/CLASSIFICATION

C
In addition to the arc sign and Royal London Hospital test, a subjective report of pain located 2–6 cm proximal to the Achilles tendon insertion and pain with palpation of the mid-portion of the tendon appear helpful in diagnosing Achilles tendinopathy.

DIFFERENTIAL DIAGNOSIS

F
Clinicians should consider diagnostic classifications other than Achilles tendinopathy, including involvement of the plantaris tendon, when the patient’s reported activity limitations or impairments of body function and structure are not consistent with those presented in the diagnosis/classification/clinical course section of this updated guideline, or, when the patient’s symptoms are not resolving with interventions aimed at normalization of the patient’s impairments of body function.

The following conditions should be considered in the differential diagnosis of patients presenting with posterior ankle pain: acute Achilles tendon rupture, partial tear of the Achilles tendon, retrocalcaneal bursitis, posterior ankle impingement, irritation or neuroma of the sural nerve, os trigonum syndrome, accessory soleus muscle, Achilles tendon ossification, systemic inflammatory disease, or insertional Achilles tendinopathy.

EXAMINATION - OUTCOME MEASURES
ACTIVITY LIMITATION - SELF-REPORT MEASURES

A
Clinicians should utilize either the VISA-A or FAAM when collecting patient-reported outcome measures in patients with a diagnosis of Achilles tendinopathy. The VISA-A has been cross culturally adapted to multiple languages.

EXAMINATION - ACTIVITY LIMITATION – PHYSICAL PERFORMANCE MEASURES

B
Clinicians should use physical performance measures including hop and heel-rise endurance tests, as appropriate, to assess a patient’s functional status and document findings.
INTERVENTIONS – IONTOPHORESIS

B
Clinicians should use iontophoresis with dexamethasone to decrease pain and improve function in patients with Achilles tendinopathy.

INTERVENTION – MANUAL THERAPY

F
Clinicians may use joint and soft tissue mobilization to reduce pain and improve mobility and function in patients with Achilles tendinopathy.

INTERVENTION – HEEL LIFTS

D
No recommendation can be made because contradictory evidence exists for the use of heel lifts in patients with Achilles tendinopathy.

INTERVENTION – EXERCISE

A
Clinicians should use either eccentric or a heavy load slow speed exercise program for Achilles tendinopathy to decrease pain and increase function. Because specific factors (e.g. frequency, load, and speed) are not controlled for in studies, the optimum parameters for exercise are yet to be identified. However, patients should exercise at least twice weekly within their pain tolerance.

INTERVENTION – STRETCHING

C
Clinicians may use plantar flexor stretching with the knee flexed and extended to reduce pain and improve satisfaction with outcome in patients with Achilles tendinopathy who exhibit limited dorsiflexion range of motion.

INTERVENTION - PATIENT EDUCATION AND COUNSELING

E
Patient education and counseling recommending strategies to gain or maintain optimal lean body mass in nonathletic individuals with a high body mass index and the use of shock absorbing insoles to mitigate commonly occurring weight loading stresses may be appropriate given identified risk factors.
INTERVENTION – NIGHT SPLINTS

C
Night splints cannot be recommended to reduce pain in patients with Achilles tendinopathy.

INTERVENTION – LOW LEVEL LASER THERAPY

D
Clinicians may use low level laser therapy in patients with midportion Achilles tendinopathy after recommended interventions have failed to improve pain, stiffness or function.

INTERVENTION - ORTHOTICS

B
Clinicians may use orthotics for documented foot impairments in patients with midportion Achilles tendinopathy after the use of recommended interventions has failed to improve pain and/or function.

INTERVENTION - TAPING

F
Therapeutic elastic tape cannot be recommended to reduce pain or improve functional performance in patients with Achilles tendinopathy.

F
Clinicians may use rigid taping to decrease strain on the Achilles tendon and/or alter foot posture in patients with Achilles tendinopathy.

INTERVENTION - NEUROMUSCULAR RE-EDUCATION

F
Clinicians may use neuromuscular exercises targeting lower extremity impairments that may lead to abnormal kinetics and/or kinematics, specifically eccentric overload of the Achilles tendon during weight-bearing activities.

INTERVENTION - DRY NEEDLING

F
Individuals with mid portion Achilles tendinopathy for greater than 3 months and increased tendon thickness may be treated using combined therapy of dry needling with injection under ultrasound guidance and eccentric exercise to decrease pain.
*These recommendations and clinical practice guidelines are based on the scientific literature published prior to April 2016
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTA</td>
<td>American Physical Therapy Association</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CPG</td>
<td>Clinical Practice Guideline</td>
</tr>
<tr>
<td>DECT</td>
<td>Dual-energy Computed Tomography</td>
</tr>
<tr>
<td>ESWT</td>
<td>Extracorporeal Shockwave Therapy</td>
</tr>
<tr>
<td>FAAM</td>
<td>Foot and Ankle Ability Measure</td>
</tr>
<tr>
<td>ICF</td>
<td>International Classification of Functioning, Disability and Health</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Disease</td>
</tr>
<tr>
<td>J</td>
<td>Joules</td>
</tr>
<tr>
<td>JOSPT</td>
<td>Journal of Orthopaedic and Sports Physical Therapy</td>
</tr>
<tr>
<td>K</td>
<td>Kappa</td>
</tr>
<tr>
<td>LEFS</td>
<td>Lower Extremity Function Scale</td>
</tr>
<tr>
<td>LLLT</td>
<td>Low Level Laser Therapy</td>
</tr>
<tr>
<td>LOINC</td>
<td>Logical Observation Identifiers Names and Codes</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>MSU</td>
<td>Monosodium Urate</td>
</tr>
<tr>
<td>mW</td>
<td>Milliwatt</td>
</tr>
<tr>
<td>N</td>
<td>Number of subjects or patients</td>
</tr>
<tr>
<td>nM</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NPRS</td>
<td>Numeric Pain Rating Scale</td>
</tr>
<tr>
<td>PRP</td>
<td>Platelet Rich Plasma</td>
</tr>
<tr>
<td>US</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>VISA-A</td>
<td>Victorian Institute of Sports Assessment</td>
</tr>
</tbody>
</table>
INTRODUCTION

AIM OF THE GUIDELINES
The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based clinical practice guidelines (CPGs) for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization’s International Classification of Functioning, Disability, and Health (ICF).

The purposes of these clinical guidelines are to:

- Describe evidence-based physical therapy practice including diagnosis, prognosis, intervention, and assessment of outcome for musculoskeletal disorders commonly managed by orthopaedic physical therapists
- Classify and define common musculoskeletal conditions using the World Health Organization’s terminology related to impairments of body function and body structure, activity limitations, and participation restrictions
- Identify interventions supported by current best evidence to address impairments of body function and structure, activity limitations, and participation restrictions associated with common musculoskeletal conditions
- Identify appropriate outcome measures to assess changes resulting from physical therapy interventions in body function and structure as well as in activity and participation of the individual
- Provide a description to policy makers, using internationally accepted terminology, of the practice of orthopaedic physical therapists
- Provide information for payers and claims reviewers regarding the practice of orthopaedic physical therapy for common musculoskeletal conditions
- Create a reference publication for orthopaedic physical therapy clinicians, academic instructors, clinical instructors, students, interns, residents, and fellows regarding the best current practice of orthopaedic physical therapy

STATEMENT OF INTENT
These guidelines are not intended to be construed or to serve as a standard of medical care. Standards of care are determined on the basis of all clinical data available for an individual patient and are subject to change as scientific knowledge and technology advance and patterns of care evolve. These parameters of practice should be considered guidelines only. Adherence to them will not ensure a successful outcome in every patient, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgment regarding a particular clinical procedure or treatment plan must be made based on clinician experience and expertise in light of the clinical presentation of the patient, the available evidence, available diagnostic and treatment options, and the patient’s values, expectations, and preferences. However, we suggest that significant departures from accepted guidelines should be documented in the patient’s medical records at the time the relevant clinical decision is made.
Methods

Content experts were appointed by the Orthopaedic Section, APTA to conduct a review of the literature and to develop an updated Achilles Pain, Stiffness, and Muscle Power Deficits: Achilles Tendinitis: Clinical Practice Guideline as indicated by the current state of the evidence in the field. The aims of the revision were to provide a concise summary of the evidence since publication of the original guideline and to develop new recommendations or revise previously published recommendations to support evidence-based practice. The authors of this guideline revision worked with research librarians with expertise in systematic review to perform a systematic search for articles related to classification, examination, and intervention strategies for Achilles Pain, Stiffness, and Muscle Power Deficits: Achilles Tendinitis. Briefly, the following databases were searched from 2009 to 2016: MEDLINE; CINAHL; Cochrane Library; and PEDro [See APPENDIX A for full search strategies and APPENDIX B for search dates and results, available at www.jostpt.org].

The authors declared relationships and developed a conflict management plan, which included submitting a Conflict of Interest form to the Orthopaedic Section, APTA, Inc. Articles that were authored by a reviewer were assigned to an alternate reviewer. Funding was provided to the CPG development team for travel and expenses for CPG development training. The CPG development team maintained editorial independence.

Articles contributing to recommendations were reviewed based on specified inclusion and exclusion criteria with the goal of identifying evidence relevant to physical therapist clinical decision-making for adult persons with Achilles Pain, Stiffness, and Muscle Power Deficits: Achilles Tendinitis. The title and abstract of each article were reviewed independently by 2 members of the CPG development team for inclusion. [See APPENDIX C for Inclusion and Exclusion criteria, available at www.jospt.org]. Full text review was then similarly conducted to obtain the final set of articles for contribution to recommendations. The team leader (RLM) provided the final decision for discrepancies that were not resolved by the review team. [See APPENDIX D for flow chart of articles and APPENDIX E for articles included in recommendations by topic, available at www.jospt.org]. For selected relevant topics that were not appropriate for the development of recommendations, such as incidence and imaging, articles were not subject to systematic review process and were not included in the flow chart. Evidence tables for this CPG are available on the Clinical Practice Guidelines page of the Orthopaedic Section of the APTA website: www.orthopt.org.

This guideline was issued in 2017 based on the published literature up to 2016. This guideline will be considered for review in 2021, or sooner if new evidence becomes available. Any updates to the guideline in the interim period will be noted on the Orthopaedic Section of the APTA website: www.orthopt.org.

LEVELS OF EVIDENCE
Individual clinical research articles were graded according to criteria adapted from the Centre for Evidence-Based Medicine, Oxford, United Kingdom for diagnostic,
prospective, and therapeutic studies. In teams of 2, each reviewer independently assigned a level of evidence and evaluated the quality of each article using a critical appraisal tool. [See APPENDIX F and G for Levels of Evidence table and details on procedures used for assigning levels of evidence, available at www.jospt.org]. The evidence update was organized from highest level of evidence to lowest level. An abbreviated version of the grading system is provided below.

I	Evidence obtained from high quality diagnostic studies, prospective studies, systematic reviews, or randomized controlled trials
II	Evidence obtained from lesser-quality diagnostic studies, systematic reviews, prospective studies, or, randomized controlled trials (eg, weaker diagnostic criteria and reference standards, improper randomization, no blinding, less than 80% follow-up)
III	Case controlled studies or retrospective studies
IV	Case series
V	Expert opinion

GRADES OF EVIDENCE
The strength of the evidence supporting the recommendations was graded according to the previously established methods for the original guideline and those provided below. Each team developed recommendations based on the strength of evidence, including how directly the studies addressed the question of Achilles Pain, Stiffness, and Muscle Power Deficits: Achilles Tendinitis. In developing their recommendations, the authors considered the strengths and limitations of the body of evidence and the health benefits, side effects, and risks of tests and interventions.

<table>
<thead>
<tr>
<th>GRADES OF RECOMMENDATION</th>
<th>STRENGTH OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Strong evidence</td>
</tr>
<tr>
<td>Moderate evidence</td>
<td></td>
</tr>
<tr>
<td>Weak evidence</td>
<td></td>
</tr>
<tr>
<td>Conflicting evidence</td>
<td>A preponderance of level I and/or level II studies support the recommendation. This must include at least 1 level I study</td>
</tr>
<tr>
<td></td>
<td>A single high-quality randomized controlled trial or a preponderance of level II studies support the recommendation</td>
</tr>
<tr>
<td></td>
<td>A single level II study or a preponderance of level III and IV studies, including statements of consensus by content experts, support the recommendation</td>
</tr>
<tr>
<td></td>
<td>Higher-quality studies conducted on this topic disagree with respect to their conclusions. The recommendation is based on these conflicting studies</td>
</tr>
</tbody>
</table>

| E | Theoretical/foundational evidence | A preponderance of evidence from animal or cadaver studies, from conceptual models/principles, or from basic sciences/bench research support this conclusion |
| F | Expert opinion | Best practice based on the clinical experience of the guidelines development team |

GUIDELINE REVIEW PROCESS AND VALIDATION

Identified reviewers who are experts in Achilles Pain, Stiffness, and Muscle Power Deficits: Achilles Tendinitis management and rehabilitation reviewed the clinical practice guideline draft for integrity, accuracy, and to ensure that it fully represents the current evidence for the condition. The guideline draft was also posted for public comment and review on www.orthopt.org and a notification of this posting was sent to the members of the Orthopaedic Section, APTA, Inc. In addition, a panel of consumer/patient representatives and external stakeholders, such as claims reviewers, medical coding experts, academic educators, clinical educators, physician specialists, and researchers also reviewed the guideline. All comments, suggestions, and feedback from the expert reviewers, public, and consumer/patient representatives were provided to the authors and editors for consideration and revisions. Guideline development methods policies, and implementation processes are reviewed at least yearly by the Orthopaedic Section, APTA’s ICF-based Clinical Practice Guideline Advisory Panel, including consumer/patient representatives, external stakeholders, and experts in physical therapy practice guideline methodology.

DISSEMINATION AND IMPLEMENTATION TOOLS

In addition to publishing these guidelines in the Journal of Orthopaedic and Sports Physical Therapy (JOSPT), these guidelines will be posted on clinical practice guideline areas of both the JOSPT and the Orthopaedic Section, APTA websites, which are free access website areas, and submitted to be available free access on the Agency for Healthcare Quality and Research’s website (guideline.gov). The implementation tools planned to be available for patients, clinicians, educators, payors, policy makers, and researchers, and the associated implementation strategies are:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Perspectives for Patients”</td>
<td>Patient-oriented guideline summary in available on jospt.org and orthopt.org</td>
</tr>
<tr>
<td>Mobile app of guideline based exercises for patient/clients and healthcare practitioners</td>
<td>Marketing and distribution of app using orthopt.org and jospt.org</td>
</tr>
<tr>
<td>Clinician’s Quick-Reference Guide</td>
<td>Summary or guideline recommendations available on orthopt.org</td>
</tr>
<tr>
<td>Read-for-credit continuing education units</td>
<td>Continuing Education Units available for physical therapists and athletic trainers from JOSPT</td>
</tr>
</tbody>
</table>
Webinars educational offering for healthcare practitioners
Guideline-based instruction available for practitioners on orthopt.org

Mobile and web-based app of guideline for training of healthcare practitioners
Marketing and distribution of app using orthopt.org and jospt.org

Physical Therapy National Outcomes Data Registry
Support the ongoing usage of data registry for common musculoskeletal conditions of the foot and ankle

Logical Observation Identifiers Names and Codes mapping
Publication of minimal data sets and their corresponding LOINC codes for the foot and ankle region on orthopt.org

Non-English versions of the guidelines and guideline implementation tools
Development and distribution of translated guidelines and tools to JOSPT’s international partners and global audience via jospt.org

CLASSIFICATION
The terminology used to describe Achilles tendon disorders varies, with “tendinitis,” “tendonitis,” or “paratenonitis” commonly being used and therefore suggestive of an inflammatory condition. Because inflammation and degeneration are usually not mutually exclusive, 78, 79, 90, 96, 122 “Achilles tendinopathy” will be the focus of this clinical guideline unless otherwise stated.

"The ICD-10 code associated with Achilles tendinopathy is **M76.6 Achilles Tendinitis/Achilles bursitis**. The corresponding primary ICD-9 CM code, commonly used in the USA, is **726.71 Achilles bursitis or tendinitis**. The primary ICF body function codes associated with Achilles tendinopathy are **b28015 Pain in lower limb**, **b7300 Power of isolated muscles and muscle groups**, and **b7800 Sensation of muscle stiffness**. The primary ICF body structures codes associated with Achilles tendinopathy are **s75012 Muscles of lower leg** and **s75028 Structure of ankle and foot, specified as Achilles tendon**. The primary ICF activities and participation codes associated with Achilles tendinopathy are **d4500 Walking short distances**, **d4501 Walking long distances**, **d4552 Running**, **d4553 Jumping**, and **d9201 Sports**. The primary and secondary ICD-10 and ICF codes associated with Achilles tendinopathy are provided in **TABLE 3** on the following page.
ICD-10 and ICF Codes Associated With Ankle Pain and Stiffness

International Statistical Classification of Diseases and Related Health Problems

| ICD-10 | M96.6 | Achilles tendinitis/Achilles bursitis |

International Classification of Functioning, Disability, and Health

Primary ICF Codes

<table>
<thead>
<tr>
<th>Body functions</th>
<th>b28015</th>
<th>Pain in lower limb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7300</td>
<td>Power of isolated muscles and muscle groups</td>
</tr>
<tr>
<td></td>
<td>b7800</td>
<td>Sensation of muscle stiffness</td>
</tr>
<tr>
<td>Body structure</td>
<td>s75012</td>
<td>Muscles of lower leg</td>
</tr>
<tr>
<td></td>
<td>s75028</td>
<td>Structure of ankle and foot, specified as Achilles tendon</td>
</tr>
</tbody>
</table>

Activities and participation

<table>
<thead>
<tr>
<th>d4500</th>
<th>Walking short distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>d4501</td>
<td>Walking long distances</td>
</tr>
<tr>
<td>d4552</td>
<td>Running</td>
</tr>
<tr>
<td>d4553</td>
<td>Jumping</td>
</tr>
<tr>
<td>d9201</td>
<td>Sports</td>
</tr>
</tbody>
</table>

Secondary ICF Codes

<table>
<thead>
<tr>
<th>Body functions</th>
<th>b7100</th>
<th>Mobility of a single joint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b7101</td>
<td>Mobility of several joints</td>
</tr>
<tr>
<td></td>
<td>b7301</td>
<td>Power of muscles of one limb</td>
</tr>
<tr>
<td></td>
<td>b7400</td>
<td>Endurance of isolated muscles</td>
</tr>
<tr>
<td></td>
<td>b7401</td>
<td>Endurance of muscle groups</td>
</tr>
<tr>
<td></td>
<td>b770</td>
<td>Gait pattern functions (antalgic gait)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Body Structure</th>
<th>s7502</th>
<th>Structure of ankle and foot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s75022</td>
<td>Muscles of ankle and foot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activities and participation</th>
<th>d2302</th>
<th>Completing daily routine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d4350</td>
<td>Pushing with lower extremities</td>
</tr>
<tr>
<td></td>
<td>d4551</td>
<td>Climbing</td>
</tr>
<tr>
<td></td>
<td>d4600</td>
<td>Moving around within the home</td>
</tr>
<tr>
<td></td>
<td>d4601</td>
<td>Moving around within buildings other than home</td>
</tr>
<tr>
<td></td>
<td>d4602</td>
<td>Moving around outside the home and other buildings</td>
</tr>
</tbody>
</table>
ORGANIZATION OF THE GUIDELINE

For each topic, the summary recommendation and grade of evidence from the 2010 guideline are presented followed by a synthesis of the recent literature with the corresponding evidence levels. Each topic concludes with the 2017 summary recommendation and its updated grade of evidence.
PREVALENCE

2010 Summary
Disorders of the Achilles tendon rank among the most frequently reported overuse injuries in the literature. The majority of those suffering from Achilles tendinopathy are active individuals, often involved in recreational or competitive sports. Estimates of the annual incidence of Achilles tendinopathy in runners range between 7 - 9%. However, cases have been reported in sedentary groups as well. Although runners appear to be the most commonly affected cohort, Achilles disorders have been reported in a wide variety of sports. Athletes are more likely to become symptomatic when training as opposed to during competitive events. While there is an increased prevalence of Achilles injury as age increases, the mean age of those affected by Achilles disorders is between 30 and 50 years. While gender has not been directly studied, data from multiple works suggest males are affected to a greater extent than females.

Evidence Update
I
The prevalence of Achilles tendinopathy in elite male soccer players during one season ranged between 2.1–5.1%.

I
In a large prospective cohort of novice runners, 7% went on to develop Achilles tendinopathy.

II
A systematic review by Sobhani et al found Achilles tendinopathy to be one of the most common over-use foot and ankle injuries in sports. The prevalence of Achilles tendinopathy in the general running and ultra-marathon populations ranged between 6.2%-9.5% and 2.0%-18.5%, respectfully, in a systematic review focusing on running injuries.

II
Achilles tendinopathy was diagnosed in 1.8% of adolescent athletes at a pre-sports participation annual health examination.

II
The incidence of Achilles tendinopathy was found to be 1.85 per 1,000 patients and 2.16 per 1,000 person years in Dutch general practice populations.
III
Achilles tendinopathy was found to occur in 12.5% of rock climbers.15

2017 Summary
Achilles tendinopathy continues to be a relatively common over-use injury for individuals who are active and participate in sports.

PATHOANATOMICAL FEATURES

2017 Summary and Update
The major complaint of those with Achilles tendinopathy is pain that limits activity. Pain is preceded by an excessive mechanical stressor, such as tensile loading and/or shearing, which initiates pathological changes in the tendon.100, 106 These pathological changes can include tenocyte proliferation with tendon thickening,10, 37 neovascularity,28, 121 collagen fibril thinning and disorganization,106 increase of noncollagenic and fibrocartilage matrix,16, 30 fat deposition48, 54, 59, 72 altered fluid movement,66 and overproduction of nitric acid with tissue apoptosis.117 Failure to control hyperthermia that results during exercise, as tendons convert some of the stored energy to heat, can also contribute by causing local cell death.106 Tendon changes associated with the pathological process weaken the mechanical and material properties of the tendon, leading to a decrease in tendon stiffness and strength,5, 7, 65, 66 and in turn ineffective force transfer.18 This may support the use of eccentric or a heavy load slow speed exercise program to potentially increase tendon stiffness. Inflammation and degeneration are usually not mutually exclusive but can exist together in varying degrees throughout this process.78, 79, 90, 96, 122

The extent and/or severity of tendon abnormalities are not consistently related to the severity of clinical presentation.21, 26, 28, 31, 39, 40, 45, 60, 66 Also, pre-symptomatic tendon thickening has been documented21, 80 and bilateral tendon changes have been found in those with unilateral symptoms.40, 66 The plantaris tendon may be involved in those with chronic Achilles tendinopathy.106, 150 A thickened plantaris tendon and associated peritendinous nerve structures may result in impingement on the medial aspect of the thickened Achilles tendon, contributing to pain and limited activity.106, 150, 151

Systematic reviews have identified genetic variants as an important factors in the pathogenesis of tendinopathy.35, 106 An abnormal neuronal phenotype can disrupt normal tendon homeostasis and healing after injury.35 The neuronal response to tendon injury involves nerve in-growth, increase sensitivity to neuronal pain mediators, and receptor activation for these mediators.13, 19, 35, 63, 80 Neuronal changes activate the nociceptive pathways to higher centers and are responsible for the sensation of pain. Therefore, altered central pain processing may also be an important factor in persistent tendon pain.64, 70, 147, 159 Genetic variants, such as those associated with mRNA stability, can predispose individuals’ to abnormalities in collagen production.2, 29, 56, 69, 124, 139, 141, 145, 146 This abnormal collagen may negatively affect the mechanical and material properties of the tendon leading to ineffective force transfer.29, 44, 124 The relationship between
genotype, abnormal collagen, mechanical stress, and symptom presentation is multifactorial and not well understood.9, 53, 125, 131, 140

RISK FACTORS

2010 Summary
For specific groups of individuals, clinicians should consider abnormal ankle dorsiflexion range of motion, abnormal subtalar joint range of motion, decreased ankle plantar flexion strength, increased foot pronation, and abnormal tendon structure as intrinsic risk factors associated with Achilles tendinopathy. Obesity, hypertension, hyperlipidemia, and diabetes are medical conditions associated with Achilles tendinopathy. Clinicians should also consider training errors, environmental factors, and faulty equipment as extrinsic risk factors associated with Achilles tendinopathy.

Evidence Update

I A systematic review by Dowling et al42 investigating dynamic foot function as a risk factor for lower limb overuse injuries included only one study related to Achilles tendinopathy. This prospective study found altered posterior-anterior force displacement and an increase in laterally directed force distribution underneath the forefoot as risk factors for developing Achilles tendinopathy in runners who were noted to be ‘heel-strikers’.165

II Franceschi et al50 identified obesity as a risk factor for developing tendinopathies in their systematic review.

II In athletes, increased tendon thickness80 and sonographic abnormalities (moderate or severe hypoechoic defects)21 were identified as risk factors for the development of Achilles tendinopathy.

II A retrospective study investigated injuries in military recruits who were given either a rigid (n=1,416) or shock absorbing (n=1,338) insole when issued combat boots. The recruits issued a shock absorbing insole had a 50% reduction in Achilles tendinopathy rate, with an incidence of 4% compared to 8% with the rigid insoles.74

III A systematic review identified intrinsic risk factors for Achilles tendinopathy to include increasing age, male gender, increased body weight, poor tendon temperature regulation, presence of systemic diseases, decreased muscle strength, decreased flexibility, previous injuries, poor blood supply, and genetic variants.106 One study in this review found those with a family history of tendinopathy have five times the risk of developing Achilles tendinopathy.89 Studies outside of the review by Magnan et al106 also found that gene
variants to influenced the development of Achilles tendinopathy.2, 44, 56, 69, 124, 139, 141, 145 Specifically, genes associated with the collagen production pathway may functionally effect tendon strength and stiffness, leading to an abnormal tendon response to loading.

III

A systematic review by Lorimer and Hume100 found a posterior directed center of force when landing combined with reduced eccentric strength as potential risk factors for Achilles injury while having a high arch and generating high propulsion forces to be protective against injury. Other studies not included in this review have identified neuromuscular deficits in the gluteus medius,51 gluteus maximus,51 rectus femoris,174 tibialis anterior,174 lateral gastrocnemius,174 and triceps surae muscle complex,166 altered hip, knee, and ankle moments,85 increased lower limb stiffness,36 and abnormal lower extremity kinematics during dancing push-off manovers93 as intrinsic risk factors. In a sample of 24 elite, female soccer players, a sport-specific proprioception training program over 2.5 years decreased the rate of Achilles tendinopathy and days lost from play due to injury.88

III

One study in the review by Franceschi et al50 identified a potential interaction between age and obesity with degenerative tendon changes.143 Those with dyslipidemia and fat deposition in the Achilles may be at risk for developing tendon pain.54 This finding is consistent with a systematic review that found elevated adiposity was frequently associated with general tendon injuries.55

III

A study of master track and field athletes did not find any influence of age, gender, weight, height, or participation in high versus low impact activities on the development of Achilles tendinopathy.98 However, elderly individuals with diabetes who participate in sports were found to be at increased risk for Achilles tendinopathy.1

III

The review by Magnan et al106 also identified extrinsic factors in the development of Achilles tendinopathy to include environmental conditions, shoes, equipment, surfaces, and physical activity/sport participation. One study of professional ballet dancers noted overuse injuries to be more common in females and in more technically demanding ballet techniques.149

III

Systematic reviews have specifically identified an increased risk of tendon injury with use of fluoroquinolone antibiotic therapy.97, 106, 153

IV

A study included in above reviews found mitochondrial damage to tenocytes during fluoroquinolone treatment to be potentially involved in tendinitis and tendon rupture.101
2017 Summary
The risk of developing Achilles tendinopathy is multifactorial and likely related to an interaction of intrinsic and extrinsic factors that lead to abnormal tendon loading. The body’s response to loading will be influenced by health conditions and genetic factors. An individual with any number of lower extremity impairments that lead to abnormal kinetics and/or kinematics and specifically produce an eccentric overload of the Achilles tendon may be at risk for Achilles tendon injury. The use of a shock absorbing insole may help prevent Achilles tendinopathy.

CLINICAL COURSE

2010
No summary

Evidence Update

I
In elite male soccer players, missed participation because of symptoms related to Achilles tendinopathy was relatively short (median 10 days; average 23 days). However, recurrence rate was high (27%) with a greater risk of re-injury for players resting less than 10 days. In those with severe tendinopathies (>28 days lost), 38% required surgical intervention.57

II
In a large prospective cohort of runners the median time to recovery was 82 days (minimum 21; maximum 479).113

II
The lack of uniformity in Achilles tendon structure on ultrasonography (hyper-and/or hypo-echogenicity) is not a consistent prognosticator for outcome.10, 26

II
Gender may influence response to conservative treatment as females suffering from Achilles tendinopathy perceived more pain and less of an improvement in function compared to males following 12 weeks of eccentric training.57

II
Good long term outcomes were noted in a 4.2-year60 and 5 year162 follow-up studies of subjects that completed a 3 month heavy load eccentric calf-muscle training program. However, mild pain persisted in some162 and there was considerable variability treatment outcome.52, 107, 136

III
Conflicting evidence related to BMI was identified. The systematic review by Franceschi et al50 found that increased BMI played a role in the development of Achilles
tendinopathy. However, one study in this review revealed that BMI did not influence response to conservative treatment.86

IV
A case series by Silbernagel et al147 found 80% (27/34) of subjects who completed a 12 week to 6 month progressive Achilles tendon–loading strengthening program were fully recovered at 5 year follow-up.

2017 Summary
In athletes with Achilles tendinopathy missed participation can be expected to be short. However, if not properly rested, symptoms may return. Recovery can be expected, but it may take months and be influenced by intrinsic factors, such as gender. While most patients will improve, mixed levels of recovery can be anticipated.

DIAGNOSIS/CLASSIFICATION

2010 Recommendation
C
Self-reported localized pain and perceived stiffness in the Achilles tendon following a period of inactivity (e.g. sleep, prolonged sitting), lessens with an acute bout of activity and may increase after the activity. Symptoms are frequently accompanied with Achilles tendon tenderness, a positive arc sign, and positive findings on the Royal London Hospital test. These signs and symptoms are useful clinical findings for classifying a patient with ankle pain into the ICD category of Achilles bursitis or tendinitis and the associated ICF impairment based category of Achilles pain (b28015 Pain in lower limb), stiffness (b7800 Sensation of muscle stiffness), and muscle power deficits (b7301 Power of muscles of lower limb).

Evidence Update
II
Hutchison et al75 examined 21 participants with and without Achilles tendinopathy who underwent an ultrasound scan followed by ten clinical tests for mid-portion Achilles tendinopathy. Subjective reporting of pain 2–6 cm proximal to the Achilles insertion extending to the calcaneus (sensitivity 84%, specificity 73%, and K = 0.74–0.96) and pain with palpation of the mid-portion of the tendon (sensitivity 78%, specificity 77%, and K = 0.75–0.81) were found to be accurate and reliable in diagnosing Achilles tendinopathy.

III
Reiman and colleagues128 performed a systematic review and meta-analysis of the utility of current clinical measures for the diagnosis of Achilles tendon injuries. Because only 2 studies met the inclusion criteria the authors determined further high-quality studies are needed.
2017 Recommendation

C
In addition to the arc sign and Royal London Hospital test,104 a subjective report of pain located 2-6 cm proximal to the Achilles tendon insertion and pain with palpation of the mid-portion of the tendon appear helpful in diagnosing Achilles tendinopathy.

DIFFERENTIAL DIAGNOSIS

Evidence Update

IV
Using ultrasound scans in patients with Achilles tendon, Morton and colleagues111 described the echographic features of tears in connective tissue that divide the leg into its compartments.

IV
The plantaris tendon may play a role in chronic mid-portion Achilles regional pain. A recent retrospective study examined the incidence of plantaris injuries in track and field athletes and found that plantaris injury occurred with an annual incidence of 3.9 to 9.3\%.123

V
Dalbeth and colleagues23 reported on the frequency and patterns of monosodium urate (MSU) crystal deposition in tendons and ligaments of patients with gout using dual-energy computed tomography (DECT). Ninety-two people with tophaceous gout had DECT scanning of both feet with the Achilles tendon being the most common site of MSU crystal deposition.

2010 and 2017 Recommendation

F
Clinicians should consider diagnostic classifications other than Achilles tendinopathy, including involvement of the plantaris tendon, when the patient’s reported activity limitations or impairments of body function and structure are not consistent with those presented in the diagnosis/classification/clinical course section of this updated guideline, or, when the patient’s symptoms are not resolving with interventions aimed at normalization of the patient’s impairments of body function.

The following conditions should be considered in the differential diagnosis of patients presenting with posterior ankle pain:

- Acute Achilles tendon rupture4, 134
- Partial tear of the Achilles tendon84
- Retrocalcaneal bursitis82
- Posterior ankle impingement138
- Irritation or neuroma of the sural nerve4
- Os trigonum syndrome109
- Accessory soleus muscle102
• Achilles tendon ossification
• Systemic inflammatory disease
• Insertional Achilles tendinopathy

IMAGING

2010 Summary
When a diagnosis of Achilles tendinopathy is not clear from the history and physical examination, imaging studies are warranted. Ultrasound and magnetic resonance imaging (MRI) are of assistance when clinical exam results are not sufficient to arrive at a diagnosis.

2017 Update and Summary
Ultrasound (US) imaging and magnetic resonance imaging (MRI) may be useful in assessing for differential diagnoses and identifying co-existing pathology, such as partial ruptures, bursitis, paratendonitis, plantaris involvement, and/or fascial tears. Research studies on patients with midportion Achilles tendinopathy commonly use imaging techniques to examine the severity of tendinopathy, with signs including increased tendon thickness (e.g. anterior-posterior diameter or cross-sectional area), altered composition (e.g. echogenicity on US and signal intensity on MRI) and/or neovascularization (e.g. location and extent of activity on Doppler ultrasound). However, there is conflicting evidence on the correlation between severity of tendon abnormalities and symptoms. There are techniques currently being developed using ultrasound elastography to estimate tissue mechanical properties (e.g. strain and stiffness), which may provide greater insight into tendon pathology.

EXAMINATION

OUTCOME MEASURES

ACTIVITY LIMITATION - SELF-REPORT MEASURES

2010 Recommendation
A Clinicians should incorporate validated functional outcome measures, such as the Victorian Institute of Sport Assessment (VISA-A) and the Foot and Ankle Ability Measure (FAAM). These should be utilized before and after interventions intended to alleviate the impairments of body function and structure, activity limitations, and participation restrictions associated with Achilles tendinopathy.
Evidence Update
I
Iversen et al. provided evidence of validity and reliability for the VISA-A questionnaire in Danish-speaking individuals.\(^\text{77}\)

II
The VISA-A has been validated for Turkish\(^\text{41}\) and French\(^\text{83}\) speaking patients with Achilles tendinopathy. The validity and reliability findings in these studies are consistent with the results reported in the previously published Achilles Tendinopathy guideline\(^\text{17}\).

2017 Recommendation
A
Clinicians should utilize either the VISA-A or FAAM when collecting patient-reported outcome measures in patients with a diagnosis of Achilles tendinopathy. The VISA-A has been cross culturally adapted to multiple languages.

ACTIVITY LIMITATION - PHYSICAL PERFORMANCE MEASURES

2010 Recommendation
B
When evaluating functional limitations over an episode of care for those with Achilles tendinopathy, measures of activity limitation and participation restriction can include objective and reproducible assessment of the ability to walk, descend stairs, perform unilateral heel raises, single-limb hop, and participate in recreational activity.

Evidence Update
V
A review by Macdermid and Silbernagel\(^\text{103}\) summarized physical performance measures for selected upper and lower extremity tendinopathies and recommended the hop tests and the heel-rise endurance test in the evaluation of functional performance in patients with Achilles tendinopathy.

2017 Recommendation
B
Clinicians should use physical performance measures including hop and heel-rise endurance tests, as appropriate, to assess a patient’s functional status and document findings.

PHYSICAL IMPAIRMENT MEASURES
Recommended impairment measures and their properties are provided in the 2010 CPG\(^\text{17}\).
INTERVENTIONS

A systematic search of the literature did not reveal articles to alter the 2010 recommendations for iontophoresis, manual therapy, or heel lifts in the treatment of Achilles tendinopathy. Updated recommendations are provided for exercise, which includes eccentric and heavy load slow speed protocols, stretching, night splints, low level laser therapy (LLLT), orthotics, taping neuromuscular re-education, and dry needling. Although corticosteroid injection, extracorporeal shockwave therapy (ESWT), and platelet-rich plasma injections (PRP) are used as intervention for those with Achilles tendinopathy, they are outside the scope of physical therapy practice and therefore only summaries are provided for patient education purposes.

IONTOPHORESIS

2010 and 2017 Recommendation
B
Clinicians should use iontophoresis with dexamethasone to decrease pain and improve function in patients with Achilles tendinopathy.

MANUAL THERAPY

2010 and 2017 Recommendation
F
Clinicians may use joint and soft tissue mobilization to reduce pain and improve mobility and function in patients with Achilles tendinopathy.

HEEL LIFTS

2010 and 2017 Recommendation
D
No recommendation can be made because contradictory evidence exists for the use of heel lifts in patients with Achilles tendinopathy.

EXERCISE

2010 Recommendation
A
Clinicians should consider implementing an eccentric loading program to decrease pain and improve function in patients with midportion Achilles tendinopathy.
Evidence Update

I
In a systematic review by Sussmilch-Leitch et al156 nine randomized controlled trials directly studied eccentric exercise. This systematic review found support for the use of eccentric exercise. It should be noted all studies were completed prior to 2009, the date of the last clinical practice guideline.

I
Beyer et al12 found similar outcomes for a heavy load slow speed exercise and an Alfredson eccentric training protocol. The heavy load slow speed exercise protocol included 3 bilateral full range of motion heel rise exercises performed at a speed of 6 seconds per repetition as follows: 1) flexed knee on a seated calf raise machine, 2) extended knee with the barbell on shoulders, and 3) extended knee on a leg press machine. The 12-week program included increasing weight with progressively decreasing repetitions (reps). The dosages per week were: week 1 included 3 sets x 15 reps, weeks 2-3 included 3 sets x 12 reps, weeks 4-5 included 4 sets x 10 reps, weeks 6-8 included 4 sets x 8 reps, and weeks 9-12 included 4 sets x 6 reps. Notable findings at 52-week follow-up included lower visual analog scale (VAS) during running in both groups (VAS change 0-52 weeks: eccentric training = 38, CI 25.6 to 49.9; heavy slow resistance = 49, CI 35.5 to 62.8), lower VISA-A in both groups (VISA - A change 0-52 weeks: eccentric training = -27.0, CI -35.6 to -18.0; heavy slow resistance = -34 C,I -41.8 to -26.5), decreased tendon anterior to posterior width and decreased Doppler signal. Although at 52 weeks patients in both groups continued to have pain with running (VAS running eccentric exercise = 12, CI 3.2 to 19.8; heavy slow resistance = 5, CI -0.5 to 9.8), patients in both groups expressed high levels of satisfaction (eccentric exercise = 76 %; heavy slow resistance = 98%).

II
Although several systematic reviews supported eccentric exercises, heterogeneity across exercise protocols was identified with factors including maximum load, speed of contraction, and frequency of sessions not being adequately controlled.52, 68, 107, 136 Malliaras et al108 noted that trials often did not isolate eccentric from concentric contractions and therefore questioned the need for an eccentric-only exercise protocol. However, Frizziero et al52 found eccentric training to be more effective than concentric exercises, general therapeutic exercise, and ESWT. It should be noted that compliance with eccentric training (27 to 72 %),68 and outcomes were found to vary considerably across studies.52, 68, 107, 136

II
A randomized trial (n=80, 20/group) examined daily eccentric exercise (twice per day, 7 days per week) compared to twice weekly eccentric exercise (once per day, twice per week).160 At 12 weeks the differences in the VISA-A score between the daily exercise and twice weekly eccentric exercise groups were not significant.
II
Stevens and Tan154 compared two intensities of the Alfredson protocol in a small sample (13-15 per group) of patients; 1) a “do as tolerated” group which completed an average of 112 repetitions daily and 2) a “protocol” group that averaged 166 repetitions. No significant differences between groups were found on pain VAS or VISA-A scores.

IV
This case series study by Ram et al126 evaluated the responses of 16 of 20 participants with chronic midportion Achilles tendinopathy who had tried at least one other treatment, to a 12 week eccentric training program. Despite experiencing improved scores on the VISA-A, pain VAS, and Tegner Activity Scale only 2 participants were satisfied with treatment. The low satisfaction may have to do with the fact that patients had a chronic condition and had tried other treatments as compared to other studies.12

IV
A study by de Vos et al31 examined changes in tendon structure using a specific ultrasonic tissue characterization approach before and after a 16-week eccentric exercise program. The changes defined by the ultrasonic tissue characterization approach found no association between collagen type and VISA-A at any time point.

IV
There were several randomized controlled trials that compared eccentric exercise combined with other interventions to eccentric exercise alone.25, 32, 33, 118, 133, 161, 172, 175 Summarized is the improvement of the control arm (eccentric exercise alone) to provide a description of the observed changes. Improvement in symptom severity (VISA-A) across studies varied from 2.4% at 8 weeks,175 13% at 12 weeks,118 22.6% at 16 weeks,133 20.5% at 24 weeks,33 and 25-30% at 52 weeks.25, 161 When eccentric exercise was combined with Platelet enriched plasma,25, 32, 33 autologous blood injections,118 and prolotherapy172 the results were equivalent to eccentric exercise alone. However, when eccentric exercise was combined with low level laser,160 extracorporeal shock wave therapy (ESWT)133 and acupuncture175 studies favored the combined treatments.

2017 Recommendation
A
Clinicians should use either eccentric or a heavy load slow speed exercise program for Achilles tendinopathy to decrease pain and increase function. Because specific factors (e.g. frequency, load, and speed) are not controlled for in studies, the optimum parameters for exercise are yet to be identified. However, patients should exercise at least twice weekly within their pain tolerance.
STRETCHING

2010 Recommendation
C
Stretching exercises can be used to reduce pain and improve function in patients who exhibit limited dorsiflexion range of motion with Achilles tendinopathy

Evidence Update
IV
A study by Verrall et al\(^{165}\) evaluated a 6-week stretching program that was described as an “eccentric stretching” protocol. One set required participants to perform 9 plantar flexor stretches (6 with knee straight and 3 with knee bent) off the end of a step. Each “heel drop” stretch was held for 15-20 seconds. Participants increased from one set to three and from bilateral to the involved side over a 6 week period. Pain decreased on 0-10 VAS scale from 7.2 at baseline to 2.9 at 12 weeks. Eighty two percent of participants reported 7 out of 10 or greater level of satisfaction with treatment.

2017 Recommendation
C
Clinicians may use plantar flexor stretching with the knee flexed and extended to reduce pain and improve satisfaction with outcome in patients with Achilles tendinopathy who exhibit limited dorsiflexion range of motion.

PATIENT EDUCATION AND COUNSELING

2010 No recommendation

2017 Recommendation
E
Patient education and counseling recommending strategies to gain or maintain optimal lean body mass in nonathletic individuals with a high body mass index and the use of shock absorbing insoles to mitigate commonly occurring weight loading stresses may be appropriate given identified risk factors.

NIGHT SPLINTS

2010 Recommendation
C
Night splints are not beneficial in reducing pain when compared to eccentric exercise in patients with Achilles tendinopathy.
Evidence Update

I
A systematic review by Sussmilch-Leitch et al156 found two studies with conflicting results on the additional effect of night splints added to an eccentric exercise program. A pooled meta-analysis found that a night splint provided no significant additional improvement in patient reported symptoms (VISA-A) at 12 weeks.

II
A one-year follow-up study of a randomized controlled trial found no additional benefit of a night splint to eccentric exercise.24 There were no significant differences in symptom severity (VISA-A) between groups at baseline, 3 or 12 month follow-ups. There were also no significant differences between groups in morning stiffness or patient satisfaction at one-year follow-up.

2017 Recommendation
C
Night splints cannot be recommended to reduce pain in patients with Achilles tendinopathy.

LOW LEVEL LASER THERAPY

2010 Recommendation
B
Clinicians should consider the use of low-level laser therapy to decrease pain and stiffness in patients with Achilles tendinopathy.

Evidence Update
II
Tumilty and colleagues161 compared low-level laser therapy (LLLT) to placebo laser treatment while both groups concurrently participated in an eccentric exercise program. The laser parameters included an 810 nm, 100-mW infrared probe at 3.0 J per point (18 J per session). The LLLT group did not have clinically or statistically greater improvement in the Numerical Pain Rating Scale (NPRS) or symptom severity (VISA-A) at baseline, 4, 12, and 52 weeks.

II
Hutchison et al76 compared LLLT to a placebo laser treatment using a laser probe, with a spectrum of 530 nm to 1100 nm, to administer a single pulse of 39 J. There were no differences between groups in symptom severity (VISA-A), pain (VAS), or function (LEFS) at baseline, 6 or 12 weeks. In addition, at 12 weeks neither group demonstrated a significant difference from baseline in patient-reported outcome measures (95\% CI of difference from baseline: VISA-A, -7.2 to 7.2; VAS, -15.8 to 9.6; LEFS, -4.44 to 7.33).
This randomized trial (n=80, 20/group) examined two different exercise regimens and the ability of laser to augment these programs so it is also described in the exercise section. The four arms of the study included placebo + daily exercise, LLLT + daily exercise, placebo + twice weekly exercise, and LLLT + twice weekly exercise. The key significant finding at 12 weeks was that the combination of LLLT + twice weekly exercise resulted in the greatest improvement in symptom severity over the 12 week period as measured by the VISA-A (18.5% (95% CI 9.1 to 27.9%) achieving an average score near the ceiling of the VISA-A (score = 99). In addition, the differences between the placebo + daily exercise and LLLT + daily exercise, although not significant, favored LLLT + daily exercise by 8.2% (95% CI -1.3 to 17.7). Although only the LLLT + twice weekly exercise was significant, the study was under powered to determine if laser was better than no laser. Leaving open the possibility that laser may have significant effects not just for specific exercise protocols but across different exercise protocols.

2017 Recommendation
D
Clinicians may use low level laser therapy in patients with midportion Achilles tendinopathy after recommended interventions have failed to improve pain, stiffness or function.

ORTHOTICS

2010 Recommendation
C
A foot orthosis can be used to reduce pain and alter ankle and foot kinematics while running in patients with Achilles tendinopathy.

Evidence Update
II
Two systematic reviews noted no effect of orthotics for patients with mid portion Achilles tendonopathy.107, 136

I
Munteanu et al112 examined the effects of a custom orthotic compared with a sham orthotic. All subjects also participated in an eccentric exercise program. No difference was found in VISA-A scores at baseline, 1, 3, 6, and 12 months between the two groups.

2017 Recommendation
B
Clinicians may use orthotics for documented foot impairments in patients with mid portion Achilles tendinopathy after the use of recommended interventions has failed to improve pain and/or function.
TAPING

2010 Recommendation
F
Taping may be used in an attempt to decrease strain on the Achilles tendon in patients with Achilles tendinopathy.

Evidence Update
IV
A systematic review noted that one of two low level studies supported taping for mid portion Achilles tendonopathy.¹³⁶

IV
A case-control study⁴⁷ examined the immediate effects of therapeutic elastic tape applied to the Achilles tendon and found application of tape did not improve hop distance or decrease pain.

2017 Recommendation
F
Therapeutic elastic tape cannot be recommended to reduce pain or improve functional performance in patients with Achilles tendinopathy.

F
Clinicians may use rigid taping to decrease strain on the Achilles tendon and/or alter foot posture in patients with Achilles tendinopathy.

NEUROMUSCULAR RE-EDUCATION

2010 No recommendation

Evidence Update
IV
Neuromuscular control among runners with midportion Achilles tendinopathy has been examined in several case-control studies.⁸,¹¹,⁵¹ Running studies identified patterns of decreased lower extremity muscle activity in participants with midportion Achilles tendinopathy compared to a control group.⁸,¹¹,⁵¹ However, it is unclear whether decreased muscle activity is a cause or a result of midportion Achilles tendinopathy and whether an intervention targeting these altered patterns of muscle activity improve outcomes.

2017 Recommendation
F
Clinicians may use neuromuscular exercises targeting lower extremity impairments that may lead to abnormal kinetics and/or kinematics, specifically eccentric overload of the Achilles tendon during weight-bearing activities.
DRY NEEDLING

2010 No recommendation

Evidence Update IV

In a case series study by Yeo et al.\(^{173}\) subjects received tendon injection of marcaine (tendon decompression) followed by dry needling in conjunction with a 4-week eccentric exercise program. Pain VAS scores (0-100) during rest and activity decreased by 24 and 39.1\% respectively at 6 weeks post-procedure. At 12 and 24 months, 77\% and 76\% had high or very high satisfaction levels.

2017 Recommendation F

Individuals with mid portion Achilles tendinopathy for greater than 3 months and increased tendon thickness may be treated using combined therapy of dry needling with injection under ultrasound guidance and eccentric exercise to decrease pain.

INTERVENTIONS OUTSIDE THE SCOPE OF PHYSICAL THERAPY

Summaries were not provided in 2010 for corticosteroid injection, extracorporeal shockwave therapy, and platelet-rich plasma injections.

CORTICOSTEROID INJECTION

2017 Summary

A systematic review of randomized controlled trials of corticosteroid injections for all types of tendinopathy concluded that an initial short-term benefit is not maintained at intermediate and long-term follow-up.\(^{22}\) Although the risk of a tendon rupture is low, other minor complications are more common including post injection pain, subcutaneous atrophy, and skin depigmentation.\(^{22}\) Wetke et al.\(^{167}\) found positive short-term benefits of glucocorticosteroid injections in an observational study of patients with Achilles tendinopathy (Midportion: n=75, Insertional: n=18) who did not respond to exercises alone. The combination of exercises and glucocorticosteroid injections resulted in good long-term outcomes (94\% reported improvement and 77\% reported excellent or good result).\(^{167}\)

EXTRACORPOREAL SHOCKWAVE THERAPY

2017 Summary

Extracorporeal shockwave therapy (ESWT) when combined with eccentric exercise for Achilles tendinopathy is supported in some systematic reviews with improvement in VISA-A, pain, and functional improvement.\(^{52, 62, 107, 136, 156}\) The only systematic review to perform a meta-analysis noted no effect favoring ESWT alone, however, qualitative evidence favors ESWT when combined with eccentric exercise.\(^{156}\) Two case series studies also provide low level evidence in support of the use of ESWT.\(^{142, 158}\) Saxena et al.\(^{142}\) demonstrated significant improvement with ESWT on a ranking of daily and recreational activities at 1 year follow up with a total of 78\% of the patients considering themselves improved. Taylor et al.\(^{158}\) studied ESWT in patients that failed initial therapy
Key Clinical Findings of Achilles tendinopathy:
- Subjective report of pain located 2-6 cm proximal to the Achilles tendon insertion\(^C\)
- Pain with palpation of the mid-portion of the tendon\(^C\)
- Positive arc sign\(^C\)
- Positive Royal London Hospital test\(^C\)
- Negative examination findings that would suggest lumbopelvic region referred or radiating pain including reports of low back pain, provocation of lumbar and pelvic girdle structures, lower limb nerve tension, and neurological status examination\(^F\)
Measures to Assess Level of Functioning, Presence of Associated Physical Impairments to Address with Treatment, and Response to Treatment:

- The VISA-A as a measure of symptom severity and FAAM as a measure of self-reported activity limitation and participation restriction
- Pain Visual Analog Scale to assess pain
- Active and passive talocrural dorsiflexion range of motion
- Flexibility of the gastrocnemius and soleus muscle complex
- Body mass index in nonathletic individuals
- Clinical performance measures, such as hop and heel-rise endurance tests
- Lower quarter musculoskeletal and biomechanical assessment, to include the following required elements of gait:
 - 1st metatarsophalangeal joint range of motion and accessory mobility - to attain 65° of extension at pre-swing
 - Rearfoot/Talocalcaneal range of motion and accessory mobility - to attain 4° to 6° of eversion at loading response
 - Tibialis posterior strength and movement coordination to control mid-tarsal joint motion at loading response
 - Fibularis longus strength and movement coordination to control mid-tarsal joint motion at terminal stance
 - Talocrural dorsiflexion range of motion, accessory mobility, gastrocnemius/soleus muscle length and tissue mobility to attain 10° of dorsiflexion at terminal stance
 - Gastrocnemius/soleus strength and movement coordination to control tibial advancement at mid stance and propulsion at terminal stance
 - Knee joint and thigh muscle flexibility to attain 0° of extension at terminal stance and 60° of flexion at initial swing
 - Quadriceps femoris strength and movement coordination to control knee flexion at loading response
 - Hip joint mobility and muscle flexibility to attain 10° of extension at terminal stance
 - Trunk, buttock, and thigh strength and movement coordination to control lower limb internal rotation at loading response and hip adduction at loading response and mid stance
Interventions- targeted to directly address physical impairments related to Achilles tendinopathy:

- Eccentric or a heavy load slow speed exercise\(^A\)
- Application of iontophoresis with dexamethasone\(^B\)
 - Application is appropriate for individuals that present with acute pain
- Stretching plantar flexors with knee flexed and extended\(^C\)
- Patient Education and Counseling\(^E\)
 - Address/discuss strategies to gain or maintain optimal lean body mass, especially in nonathletic individuals with a high body mass index
 - Address/discuss shock absorbing insoles to mitigate commonly occurring weight loading stresses
- Manual Therapy\(^F\)
 - Joint mobilization and manual stretching procedures to restore normal 1\(^{st}\) metatarsophalangeal joint, tarsometatarsal joints, talocalcaneal, talocrural, knee, and hip mobility Soft tissue mobilization of gastrocnemius and soleus myofascial areas of soft tissue restriction
- Rigid Taping\(^F\)
 - The primary focus is to decrease strain on the Achilles tendon and/or alter foot posture in patients with Achilles tendinopathy.
- Neuromuscular Re-education\(^F\)
 - Strengthening and training of the muscles addressing lower extremity impairments that may lead to abnormal kinetics and/or kinematics, specifically produce an eccentric overload of the Achilles tendon during weight-bearing activities. The primary focus is to reduce walking and running gait abnormalities, as well as relevant and lower quarter musculoskeletal / biomechanical assessment findings.
- Dry needling\(^F\)

A- Guidelines based on strong evidence
B- Guidelines based on moderate evidence
C- Guidelines based on weak evidence
D – Conflicting evidence
E- Guidelines based upon theoretical/foundational evidence
F- Guidelines based on expert opinion
CHRISTINE M. McDonough, PT, PhD
ICF-based Clinical Practice Guidelines
Editor
Orthopaedic Section, APTA Inc.
La Crosse, WI
and
Adjunct Clinical Assistant Professor
Department of Orthopaedic Surgery
Geisel School of Medicine at Dartmouth
Dartmouth-Hitchcock Medical Center
Lebanon, NH
and
Research Assistant Professor
Health & Disability Research Institute
Boston University School of Public Health
Boston, MA
cmm@bu.edu

Stephen Paulseth, DPT, MS
1950 Century Pk E
Los Angeles, CA
www.paulsethpt.com
and
Adjunct Clinical Instructor
Division of Biokinesiology and Physical Therapy
University of Southern California
Los Angeles, CA

Dane Wukich, MD
Dr. Charles F. Gregory Distinguished Chair of Orthopaedic Surgery
University of Texas Southwestern Medical Center
Dallas, TX

Leslie Torburn, DPT

David Killoran, PhD
Patient/Consumer Representative for the ICF-based Clinical Practice Guidelines
Orthopaedic Section, APTA Inc.
La Crosse, WI
and
Professor Emeritus
Loyola Marymount University
Los Angeles, CA
david.killoran@lmu.edu

Kornelia Kulig, PT, PhD
Co-Director
Musculoskeletal Biomechanics Laboratory
And
Professor
Division of Biokinesiology and Physical Therapy
University of Southern California
Los Angeles, CA
kulig@usc.edu

Thomas McPoil, PT, PhD
Professor
And
Director of Professional Programs
School of Physical Therapy
Regis University
Denver, CO
tmcpoil@regis.edu

Pediatric Section, APTA
and
Professor, Doctoral Programs in Physical Therapy
Rutgers University
Newark, NJ
kaplansa@sphp.rutgers.edu
Principal and Consultant
Silhouette Consulting, Inc.
Sacramento, CA
torburn@yahoo.com

Guidelines Editors
Christine M. McDonough, PT, PhD
ICF-based Clinical Practice Guidelines Editor
Orthopaedic Section, APTA Inc.
La Crosse, WI
and
Adjunct Clinical Assistant Professor
Department of Orthopaedic Surgery
Geisel School of Medicine at Dartmouth
Dartmouth-Hitchcock Medical Center
Lebanon, NH
and
Research Assistant Professor
Health & Disability Research Institute
Boston University School of Public Health
Boston, MA
cmm@bu.edu

Joseph J. Godges, DPT, MA
ICF-based Clinical Practice Guidelines Editor
Orthopaedic Section, APTA Inc.
La Crosse, WI
and
Adjunct Associate Professor of Clinical Physical Therapy
Division of Biokinesiology and Physical Therapy
University of Southern California
Los Angeles, CA
godges@usc.edu

Guy G. Simoneau, PT, PhD
ICF-based Clinical Practice Guidelines Editor
Orthopaedic Section, APTA Inc.
La Crosse, WI
and
Acknowledgements: The authors would like to acknowledge the contributions of Dartmouth Biomedical Libraries Research and Education Librarians, Heather Blunt and Pamela Bagley, for their guidance and assistance in the design and implementation of the literature search.
REFERENCES

57. Gajhede-Knudsen M, Ekstrand J, Magnusson H, Maffulli N. Recurrence of Achilles tendon injuries in elite male football players is more common after early

101. Lowes DA, Wallace C, Murphy MP, Webster NR, Galley HF. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative

130. Richards PJ, McCall IW, Day C, Belcher J, Maffulli N. Longitudinal microvasculatunity in Achilles tendinopathy (power Doppler ultrasound, magnetic resonance imaging time-intensity curves and the Victorian Institute of Sport

Yelland MJ, Sweeting KR, Lytgoe JA, Ng SK, Scuffham PA, Evans KA. Prolotherapy injections and eccentric loading exercises for painful Achilles

APPENDIX A: SEARCH STRATEGIES FOR ALL DATABASES SEARCHED

Limits: 2009 to present (05/11/2015); human; English (published CPG search included articles published from February 1 2009 to present)

Pubmed

History: 05/12/2015

<table>
<thead>
<tr>
<th>Search</th>
<th>Add to builder</th>
<th>Query</th>
<th>Items found</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>#21</td>
<td>Add</td>
<td>Search (#18 not #2) Filters: Publication date from 2009/01/01; English</td>
<td>601</td>
<td>12:50:43</td>
</tr>
<tr>
<td>#19</td>
<td>Add</td>
<td>Search (#18 not #2)</td>
<td>1424</td>
<td>12:50:43</td>
</tr>
<tr>
<td>#18</td>
<td>Add</td>
<td>Search (#16 or #17)</td>
<td>1515</td>
<td>12:49:05</td>
</tr>
<tr>
<td>#17</td>
<td>Add</td>
<td>Search ("achilles tendon"[MeSH Terms] OR ("achilles"[All Fields] AND "tendon"[All Fields]) OR "achilles tendon"[All Fields] OR "achilles"[All Fields]) AND ("tendinopathy"[MeSH Terms] OR "tendinopathy"[All Fields])</td>
<td>1425</td>
<td>11:31:17</td>
</tr>
<tr>
<td>#16</td>
<td>Add</td>
<td>Search ("achilles tendon"[MeSH Terms] OR ("achilles"[All Fields] AND "tendon"[All Fields]) OR "achilles tendon"[All Fields] OR "achilles"[All Fields]) AND ("tendinopathy"[MeSH Terms] OR "tendinopathy"[All Fields] OR "tendinitis"[All Fields])</td>
<td>1515</td>
<td>11:30:50</td>
</tr>
<tr>
<td>#2</td>
<td>Add</td>
<td>Search (animal not human)</td>
<td>3735987</td>
<td>09:46:42</td>
</tr>
</tbody>
</table>

Cochrane

Search Name: Achilles CPG Cochrane 05122015 with Heather

Date Run: 12/05/15 16:09:42.256

Description:

ID Search Hits
#1 achilles and (tendinitis or tendino* or tendon* or paratendino* or paratendono* or pantendino* or Pantendono*):ti,ab,kw Publication Year from 2009 to 2015 (Word variations have been searched)
CINAHL:
Tuesday, May 12, 2015 11:48:18 AM

<table>
<thead>
<tr>
<th>#</th>
<th>Query</th>
<th>Limiters/Expanders</th>
<th>Last Run Via</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>S1 OR S2</td>
<td>Limiters - Published Date: 20090101-; English Language; Human Search modes - Find all my search terms</td>
<td>Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL</td>
</tr>
<tr>
<td>S3</td>
<td>S1 OR S2</td>
<td>Search modes - Find all my search terms</td>
<td>Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL</td>
</tr>
<tr>
<td>S2</td>
<td>achilles AND tendono* OR tendino* OR pantendino* OR pantendono* OR paratendino* OR paratendono*</td>
<td>Search modes - Find all my search terms</td>
<td>Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL</td>
</tr>
<tr>
<td>S1</td>
<td>(MH "Achilles Tendinopathy")</td>
<td>Search modes - Find all my search terms</td>
<td>Interface - EBSCOhost Research Databases Search Screen - Advanced Search Database - CINAHL</td>
</tr>
</tbody>
</table>

PEDro:
Achilles AND tend* from 2009 forward

“Update” search strategies (May 15, 2015-April 12, 2016)

PEDro search run on 4/12/2016
Achilles AND tend* from 13/5/2016 forward
PubMed search run 4/12/2016

<table>
<thead>
<tr>
<th>#</th>
<th>Query</th>
<th>Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>Search (#2 NOT #1) AND 2015/05/12:2016 [edat] Filters: English</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>Search (#2 NOT #1) Filters: English</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>Search (#2 NOT #1)</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>Search ("achilles tendon"[MeSH Terms] OR ("achilles"[All Fields] AND "tendon"[All Fields]) OR "achilles tendon"[All Fields] AND "tendinopathy"[MeSH Terms] OR "tendinopathy"[All Fields] OR "tendinitis"[All Fields]))</td>
<td></td>
</tr>
<tr>
<td>#1</td>
<td>Search animal NOT human</td>
<td></td>
</tr>
</tbody>
</table>

CINAHL search run on 4/12/2016

<table>
<thead>
<tr>
<th>#</th>
<th>Query</th>
<th>Limiters/Expanders</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>(S1 OR S2) AND EM 20150513-</td>
<td>Limiters - English Language; Human Search modes - Find all my search terms</td>
</tr>
<tr>
<td>S2</td>
<td>achilles AND (tendino* OR tendino* OR pantendino* OR pantendino* OR paratendino* OR paratendino*)</td>
<td>Search modes - Find all my search terms</td>
</tr>
<tr>
<td>S1</td>
<td>(MH "Achilles Tendinopathy")</td>
<td>Search modes - Find all my search terms</td>
</tr>
</tbody>
</table>

Cochrane search run on 4/12/2016

achilles and (tendinitis or tendino* or tendon* or paratendino* or paratendono* or pantendino* or Pantendono*):ti,ab,kw Publication Year from 2015 to 2016
APPENDIX B: Search Results

<table>
<thead>
<tr>
<th>Database</th>
<th>Platform</th>
<th>Original: Date conducted</th>
<th>Original: # results</th>
<th>Update: Date conducted</th>
<th>Update: # results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE</td>
<td>PubMed</td>
<td>05/12/2015</td>
<td>601</td>
<td>04/12/2016</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(From Entrez date of May 13, 2015)</td>
<td></td>
</tr>
<tr>
<td>Cochrane Library</td>
<td>Wiley</td>
<td>05/12/2015</td>
<td>69 Cochrane Reviews (4) Other Reviews (12) Trials (52) Economic Evaluations (1)</td>
<td>04/12/2016</td>
<td>10</td>
</tr>
<tr>
<td>CINAHL</td>
<td>EBSCO</td>
<td>05/12/2015</td>
<td>392</td>
<td>04/12/2016</td>
<td>9</td>
</tr>
<tr>
<td>PEDro</td>
<td>CEBP</td>
<td>05/12/2015</td>
<td>45</td>
<td>04/12/2016</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(New records added from May 13, 2015 to current)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1107</td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Total with duplicates removed</td>
<td></td>
<td></td>
<td>993 (duplicates=114)</td>
<td></td>
<td>129 (duplicates=11)</td>
</tr>
</tbody>
</table>
Appendix C: Article Inclusion and Exclusion Criteria

I. Article Characteristics:
 Include:
 - English
 - Published from 2009 to present (published CPG search included articles published up to February 1 2009)
 - Articles reporting analysis of data: systematic reviews, meta-analyses, experimental and quasi-experimental, cohort, case series (n>=10), and cross-sectional studies
 Exclude (but we’ll keep track of relevant ones so we can make sure we have the actual studies):
 - Study protocols
 - Abstracts, press report, newsletter, editorial letter
 - Articles published in non-peer-reviewed publications (for example theses)
 - Case reports (one patient/case) and Case-series with less than 10 patients

II. Patient/Subject Characteristics:
 Include:
 - Studies using data from humans
 - Subjects over 16 years of age (if mixed, the mean should be over 16)
 - Subjects with Achilles tendinitis, tendinopathy, tendinosis
 - If the article reports on Achilles tendinitis along with other conditions there must be at least enough patients (~n=15 each group) with achilles tendinitis AND the results must be reported for Achilles tendinitis separately.
 Exclude:
 - Articles on healthy/normal subjects

III. Topics Included
A. For evidence update:
 - Prevalence
 - Pathoanatomic features: the functional anatomy of the ankle and foot relevant to Achilles tendinitis
 - Risk factors
 - Intrinsic – e.g. decreased dorsiflexion range of motion, subtalar motion, plantar flexion strength, pronation, and health conditions/comorbidities such as obesity, hypertension, hyperlipidemia, and diabetes.
 - Extrinsic – e.g. training characteristics, environmental factors, equipment-related factors
 - Prognosis
 - Imaging studies

B. For Formal Systematic Review
• Classification systems including but not limited to Curwin and Stanish, Nirschl Pain Phase Scale of Athletic Overuse Injuries, and Puffer and Zachazewski scale.

• Tests and measures for diagnosis of Achilles tendinitis within the scope of physical therapist practice, including but not limited to Positive Achilles Palpation Test, plantar flexion range of motion, Unilateral Heel Rise Test, the Arc Sign, Victorian Institute of Sport Assessment, Foot and Ankle Ability Measure, Royal London Hospital test.

• Differential diagnosis including but not limited to: acute Achilles rupture, partial Achilles tear, retrocalcaneal bursitis, posterior ankle impingement, sural nerve neuroma or irritation, Os trigonum syndrome, accessory soleus, Achilles tendon ossification, systemic inflammatory disease, and insertional Achilles tendinopathy.

• Measurement properties of outcome measures relevant for Achilles tendinitis, including but not limited to measures assessing:
 o Body Structures and Function
 ▪ Truncated Arch Height Ratio
 ▪ Arc Sign
 ▪ Royal London Test
 ▪ Forefoot Alignment
 ▪ Achilles Tendon palpation test
 ▪ Pain
 ▪ Range of motion (dorsi, plantar, inv, ev)
 ▪ Plantar flexion strength
 ▪ Plantar flexion endurance
 o Activity: e.g. the Silbernagel battery
 o Participation

• Interventions within the scope of practice of physical therapists, including but not limited to:
 o Eccentric loading (may change to “exercise mode”)
 o Low level Laser Therapy
 o Iontopheresis
 o Stretching
 o Foot Orthoses
 o Manual Therapy
 o Taping
 o Heel Lifts
 o Shockwave
APPENDIX D - Flow Diagram of articles leading to Recommendations.

1247 Records identified through database searching

125 duplicates removed

1122 Records screened (title and abstracts)

999 Title & Abstract excluded

112 records excluded

Full-text articles assessed for eligibility (n = 123)

Full-text excluded (n= 47)
- 7 Methodology
- 26 subjects, tests, measures outside scope
- 1 not in English
- 7 duplicates
- 6 redundant with previous CPG

Articles Considered for Recommendations (n = 76) (this should be the critical appraisal phase articles for Intervention and Measures)

39 articles not used in recommendation
- 8 methodology
- 8 outside recommendation scope
- 22 evidence insufficient for new recommendation
- 1 Duplicate

Interventions N = 28
Diagnosis N = 2
Differential Diagnosis N = 3
Measures N = 4
Appendix E:
ARTICLES INCLUDED IN RECOMMENDATIONS BY TOPIC

Diagnosis

Differential Diagnosis

Examination

Outcome Measures – Activity Limitations- Self Reported Measures

Activity Limitations – Physical Performance Measures

Interventions

Exercise

Stretching

Night Splints

Low Level Laser Therapy

Orthotics

Taping

Neuromuscular Re-Education

APPENDIX F. LEVELS OF EVIDENCE TABLE*

<table>
<thead>
<tr>
<th>Level</th>
<th>Intervention/Prevention</th>
<th>Pathoanatomic/Risk/Clinical Course/Prognosis/Differential Diagnosis</th>
<th>Diagnosis/Diagnostic Accuracy</th>
<th>Prevalence of Condition/Disorder</th>
<th>Exam/Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Systematic review of high-quality RCTs</td>
<td>Systematic review of prospective cohort studies</td>
<td>Systematic review of high-quality diagnostic studies</td>
<td>Systematic review, high-quality cross-sectional studies</td>
<td>Systematic review of prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality RCT†</td>
<td>High-quality prospective cohort study‡</td>
<td>High-quality diagnostic study§ with validation</td>
<td>High-quality cross-sectional study‖</td>
<td>High-quality prospective cohort study</td>
</tr>
<tr>
<td>II</td>
<td>Systematic review of high-quality cohort studies</td>
<td>Systematic review of retrospective cohort study</td>
<td>Systematic review of exploratory diagnostic studies or consecutive cohort studies</td>
<td>Systematic review of studies that allows relevant estimate</td>
<td>Systematic review of lower-quality prospective cohort studies</td>
</tr>
<tr>
<td></td>
<td>High-quality cohort study‡</td>
<td>Lower-quality prospective cohort study</td>
<td>High-quality exploratory diagnostic studies</td>
<td>Lower-quality cross-sectional study</td>
<td>Lower-quality prospective cohort study</td>
</tr>
<tr>
<td></td>
<td>Outcomes study or ecological study</td>
<td>High-quality retrospective cohort study</td>
<td>Consecutive cohort</td>
<td>Consecutive retrospective cohort</td>
<td>Lower-quality cross-sectional study</td>
</tr>
<tr>
<td></td>
<td>Lower-quality RCT¶</td>
<td>Consecutive retrospective cohort</td>
<td>Outcomes study or ecological study</td>
<td></td>
<td>Lower-quality cross-sectional study</td>
</tr>
<tr>
<td>III</td>
<td>Systematic reviews of case-control studies</td>
<td>Lower-quality retrospective cohort study</td>
<td>Lower-quality exploratory diagnostic studies</td>
<td>Local nonrandom study</td>
<td>High-quality cross-sectional study</td>
</tr>
<tr>
<td></td>
<td>High-quality case-control study</td>
<td>High-quality cross-sectional study</td>
<td>Nonconsecutive retrospective cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower-quality cohort study</td>
<td>Case-control study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Case series</td>
<td>Case series</td>
<td>Case-control study</td>
<td></td>
<td>Lower-quality cross-sectional study</td>
</tr>
<tr>
<td>V</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

Abbreviation: RCT, randomized clinical trial.

*Adapted from Phillips et al62 (http://www.cebm.net/index.aspx?o=1025). See also APPENDIX G.
†High quality includes RCTs with greater than 80% follow-up, blinding, and appropriate randomization procedures.
‡High-quality cohort study includes greater than 80% follow-up.
§High-quality diagnostic study includes consistently applied reference standard and blinding.
‖High-quality prevalence study is a cross-sectional study that uses a local and current random sample or censuses
Weak diagnostic criteria and reference standards, improper randomization, no blinding, and less than 80% follow-up may add bias and threats to validity.
APPENDIX G. PROCEDURES FOR ASSIGNING LEVELS OF EVIDENCE

- Level of evidence is assigned based on the study design using the Levels of Evidence table (APPENDIX F), assuming high quality (e.g., for intervention, randomized clinical trial starts at level I)
- Study quality is assessed using the critical appraisal tool, and the study is assigned 1 of 4 overall quality ratings based on the critical appraisal results
- Level of evidence assignment is adjusted based on the overall quality rating:
 - High quality (high confidence in the estimate/results): study remains at assigned level of evidence (e.g., if the randomized clinical trial is rated high quality, its final assignment is level I). High quality should include:
 ▪ Randomized clinical trial with greater than 80% follow-up, blinding, and appropriate randomization procedures
 ▪ Cohort study includes greater than 80% follow-up
 ▪ Diagnostic study includes consistently applied reference standard and blinding
 ▪ Prevalence study is a cross-sectional study that uses a local and current random sample or censuses
 - Acceptable quality (the study does not meet requirements for high quality and weaknesses limit the confidence in the accuracy of the estimate): downgrade 1 level
 ▪ Based on critical appraisal results
 - Low quality: the study has significant limitations that substantially limit confidence in the estimate: downgrade 2 levels
 ▪ Based on critical appraisal results
 - Unacceptable quality: serious limitations - exclude from consideration in the guideline
 ▪ Based on critical appraisal results