Nonarthritic Hip Joint Pain

Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability and Health From the Orthopaedic Section of the American Physical Therapy Association

RECOMMENDATIONS .. A2
INTRODUCTION .. A2
METHODS .. A3
CLINICAL GUIDELINES:
Impairment/Function-Based Diagnosis A6
CLINICAL GUIDELINES:
Examination .. A15
CLINICAL GUIDELINES:
Interventions .. A22
SUMMARY OF RECOMMENDATIONS A25
AUTHOR/REVIEWER AFFILIATIONS AND CONTACTS A26
REFERENCES .. A27

REVIEWERS: Roy D. Altman, MD • Todd Davenport, DPT • Anthony Delitto, PT, PhD
John DeWitt, DPT • Amanda Ferland, DPT • Helene Fearon, PT • Timothy L. Flynn, PT, PhD
Jennifer Kusnell • Joy MacDermid, PT, PhD • James W. Matheson, DPT • RobRoy L. Martin, PT, PhD
Philip McClure, PT, PhD • John Meyer, DPT • Marc Philippon, MD • Leslie Torburn, DPT

For author, coordinator, contributor, and reviewer affiliations, see end of text. Copyright ©2014 Orthopaedic Section, American Physical Therapy Association (APTA), Inc, and the Journal of Orthopaedic & Sports Physical Therapy®. The Orthopaedic Section, APTA, Inc, and the Journal of Orthopaedic & Sports Physical Therapy consent to the reproduction and distribution of this guideline for educational purposes. Address correspondence to: Joseph Godges, DPT, ICF Practice Guidelines Coordinator, Orthopaedic Section, APTA, Inc, 2920 East Avenue South, Suite 200, La Crosse, WI 54601. E-mail: icf@orthopt.org
Recommendations

RISK FACTORS: Clinicians should consider the presence of osseous abnormalities, local or global ligamentous laxity, connective tissue disorders, and nature of the patient’s activity and participation as risk factors for hip joint pathology. (Recommendation based on expert opinion.)

DIAGNOSIS/CLASSIFICATION – NONARTHritic HIP JOINT PAIN: Clinicians should use the clinical findings of anterior groin or lateral hip pain or generalized hip joint pain that is reproduced with the hip flexion, adduction, internal rotation (FADIR) test or the hip flexion, abduction, external rotation (FABER) test, along with consistent imaging findings, to classify a patient with hip pain into the International Statistical Classification of Diseases and Related Health Problems (ICD) categories of M25.5 Pain in joint, M24.7 Protrusio acetabula, M24.0 Loose body in joint, and M24.2 Disorder of ligament, and the associated International Classification of Functioning, Disability and Health (ICF) impairment-based categories of hip pain (b28016 Pain in joints) and mobility impairments (b7100 Mobility of a single joint; b7150 Stability of a single joint). (Recommendation based on weak evidence.)

DIFFERENTIAL DIAGNOSIS: Clinicians should consider diagnostic categories other than nonarthritic joint pain when the patient’s history, reported activity limitations, or impairments of body function and structure are not consistent with those presented in the Diagnosis/Classification section of this guideline or when the patient’s symptoms are not diminishing with interventions aimed at normalization of the impairments of body function. (Recommendation based on expert opinion.)

EXAMINATION – OUTCOME MEASURES: Clinicians should use a validated outcome measure, such as the Hip Outcome Score (HOS), the Copenhagen Hip and Groin Outcome Score (HAGOS), or the International Hip Outcome Tool (HOT-33), before and after interventions intended to alleviate the impairments of body function and structure, activity limitations, and participation restrictions in individuals with nonarthritic hip joint pain. (Recommendation based on strong evidence.)

EXAMINATION – PHYSICAL IMPAIRMENT MEASURES: When evaluating patients with suspected or confirmed hip pathology over an episode of care, clinicians should assess impairments of body function, including objective and reproducible measures of hip pain, mobility, muscle power, and movement coordination. (Recommendation based on moderate evidence.)

INTERVENTION – PATIENT EDUCATION AND COUNSELING: Clinicians may utilize patient education and counseling for modifying aggravating factors and managing pain associated with the nonarthritic hip joint. (Recommendation based on expert opinion.)

INTERVENTION – MANUAL THERAPY: In the absence of contraindications, joint mobilization procedures may be indicated when capsular restrictions are suspected to impair hip mobility, and soft tissue mobilization procedures may be indicated when muscles and their related fascia are suspected to impair hip mobility. (Recommendation based on expert opinion.)

INTERVENTION – THERAPEUTIC EXERCISES AND ACTIVITIES: Clinicians may utilize therapeutic exercises and activities to address joint mobility, muscle flexibility, muscle strength, muscle power deficits, deconditioning, and metabolic disorders identified during the physical examination of patients with nonarthritic hip joint pain. (Recommendation based on expert opinion.)

INTERVENTION – NEUROMUSCULAR RE-EDUCATION: Clinicians may utilize neuromuscular re-education procedures to diminish movement coordination impairments identified in patients with nonarthritic hip joint pain. (Recommendation based on expert opinion.)

*These recommendations and clinical practice guidelines are based on the scientific literature accepted for publication prior to January 2013.

Introduction

AIM OF THE GUIDELINES

The Orthopaedic Section of the American Physical Therapy Association (APTA) has an ongoing effort to create evidence-based practice guidelines for orthopaedic physical therapy management of patients with musculoskeletal impairments described in the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) impairment-based categories of health.
Introduction (continued)

Classification of Functioning, Disability and Health (ICF). The purposes of these clinical guidelines are to:

- Describe evidence-based physical therapy practice, including diagnosis, prognosis, intervention, and assessment of outcome, for musculoskeletal disorders commonly managed by orthopaedic physical therapists
- Classify and define common musculoskeletal conditions using the World Health Organization’s terminology related to impairments of body function and body structure, activity limitations, and participation restrictions
- Identify interventions supported by current best evidence to address impairments of body function and structure, activity limitations, and participation restrictions associated with common musculoskeletal conditions
- Identify appropriate outcome measures to assess changes resulting from physical therapy interventions in body function and structure as well as in activity and participation of the individual
- Provide a description to policy makers, using internationally accepted terminology, of the practice of orthopaedic physical therapists
- Provide information for payers and claims reviewers regarding the practice of orthopaedic physical therapy for common musculoskeletal conditions
- Create a reference publication for orthopaedic physical therapy clinicians, academic instructors, clinical instructors, students, interns, residents, and fellows regarding the best current practice of orthopaedic physical therapy

STATEMENT OF INTENT

These guidelines are not intended to be construed or to serve as a standard of medical care. Standards of care are determined on the basis of all clinical data available for an individual patient and are subject to change as scientific knowledge and technology advance and patterns of care evolve. These parameters of practice should be considered guidelines only. Adherence to them will not ensure a successful outcome in every patient, nor should they be construed as including all proper methods of care or excluding other acceptable methods of care aimed at the same results. The ultimate judgment regarding a particular clinical procedure or treatment plan must be made in light of the clinical data presented by the patient; the diagnostic and treatment options available; and the patient’s values, expectations, and preferences. However, we suggest that significant departures from accepted guidelines should be documented in the patient’s medical records at the time the relevant clinical decision is made.

Methods

Content experts were appointed by the Orthopaedic Section, APTA as developers and authors of clinical practice guidelines for musculoskeletal conditions of the hip that are commonly treated by physical therapists. These content experts were given the task to identify impairments of body function and structure, activity limitations, and participation restrictions, described using International Classification of Functioning, Disability and Health (ICF) terminology, that could (1) categorize patients into mutually exclusive impairment patterns on which to base intervention strategies, and (2) serve as measures of changes in function over the course of an episode of care. The second task given to the content experts was to describe the supporting evidence for the identified impairment-pattern classification as well as interventions for patients with activity limitations and impairments of body function and structure consistent with the identified impairment-pattern classification. It was also acknowledged by the Orthopaedic Section, APTA content experts that only performing a systematic search and review of the evidence related to diagnostic categories based on International Statistical Classification of Diseases and Related Health Problems (ICD) terminology would not be sufficient for these ICF-based clinical practice guidelines, as most of the evidence associated with changes in levels of impairment or function in homogeneous populations is not readily searchable using the ICD terminology. Thus, the authors of this guideline independently performed a systematic search of MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews (1967 through January 2013) for any relevant articles related to classification, examination, and intervention strategies for non-arthritic hip joint pain. Additionally, when relevant articles were identified, their reference lists were hand searched in an attempt to identify other relevant articles. Articles from the searches were compiled and reviewed for accuracy by the authors. This guideline was issued in 2014 based on publications in the scientific literature prior to January 2013. This guideline will be considered for review in 2018, or sooner if new evidence becomes available. Any updates to the guideline in the interim period will be noted on the Orthopaedic Section of the APTA website (www.orthopt.org).

LEVELS OF EVIDENCE

Individual clinical research articles were graded according to
Methods (continued)

criteria described by the Centre for Evidence-based Medicine, Oxford, UK (http://www.cebm.net) for diagnostic, prospective, and therapeutic studies. If the 2 content experts did not agree on a grade of evidence for a particular article, a third content expert was used to resolve the issue. An abbreviated version of the grading system is provided below.

<table>
<thead>
<tr>
<th>GRADES OF EVIDENCE</th>
<th>GRADES OF RECOMMENDATION BASED ON</th>
<th>STRENGTH OF EVIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Evidence obtained from high-quality diagnostic studies, prospective studies, or randomized controlled trials</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Evidence obtained from lesser-quality diagnostic studies, prospective studies, or randomized controlled trials (eg, weaker diagnostic criteria and reference standards, improper randomization, no blinding, less than 80% follow-up)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Case-control studies or retrospective studies</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Case series</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Expert opinion</td>
<td></td>
</tr>
</tbody>
</table>

REVIEW PROCESS
The Orthopaedic Section, APTA also selected consultants from the following areas to serve as reviewers of the early drafts of these clinical practice guidelines:

- Claims review
- Coding
- Rheumatology
- Hip pain rehabilitation
- Medical practice guidelines
- Manual therapy
- Movement science
- Orthopaedic physical therapy residency education
- Orthopaedic physical therapy clinical practice
- Orthopaedic surgery
- Outcomes research
- Physical therapy academic education
- Physical therapy patient perspective
- Sports physical therapy residency education
- Sports rehabilitation

Comments from these reviewers were utilized by the authors to edit these clinical practice guidelines prior to submitting them for publication to the Journal of Orthopaedic & Sports Physical Therapy. In addition, several physical therapists practicing in orthopaedic and sports physical therapy settings volunteered to provide feedback on initial drafts of these clinical practice guidelines related to the guidelines’ usefulness, validity, and impact.

CLASSIFICATION
The primary ICD-10 codes associated with nonarthritic hip pain are M25.5 Pain in joint, M24.7 Protrusio acetabuli, M24.0 Loose body in joint, and M24.2 Disorder of ligament.

The corresponding ICD-9-CM codes and conditions are:

- 719.45 Joint pain
- 718.65 Unspecified intrapelvic protrusion of acetabulum
- 718.15 Loose body in joint
- 718.5 Other derangement of joint pelvic region and thigh

Other ICD-10 codes that may be associated with nonarthritic hip joint pain are:

- M21.0 Valgus deformity, not elsewhere classified
- M21.1 Varus deformity, not elsewhere classified
- M21.2 Flexion deformity
- M24.3 Pathological dislocation and subluxation of joint, not elsewhere classified
- M24.4 Recurrent dislocation and subluxation of joint
Methods (continued)

- M24.5 Contracture of joint
- M24.6 Ankylosis of joint
- M24.9 Joint derangement, unspecified
- M25.0 Hemarthrosis
- M25.3 Other instability of joint
- M25.4 Effusion of joint
- M25.6 Stiffness of joint, not elsewhere classified
- M25.7 Osteophyte
- M25.8 Other specified joint disorders
- M25.9 Joint disorder, unspecified
- Q65.6 Unstable hip
- R29.4 Clicking hip
- S73 Dislocation, sprain and strain of joint ligaments of hip

The primary ICF body function codes associated with nonarthritic hip joint pain are b28016 Pain in joints, b7100 Mobility of a single joint, and b7150 Stability of a single joint. Other ICF body function codes that may be associated with this condition are b7300 Power of isolated muscles and muscle groups, b7401 Endurance of muscle groups, b7603 Supportive functions of arm and leg, b770 Gait pattern functions, and b7800 Sensation of muscle stiffness.

The primary ICF body structure code associated with nonarthritic hip joint pain is s75001 Hip joint. Other ICF body structure codes associated with this condition are s7402 Muscles of pelvic region and s7403 Ligaments and fasciae of pelvic region.

The primary ICF activities and participation codes associated with nonarthritic hip joint pain are d4104 Standing, d4151 Maintaining a squatting position, d4153 Maintaining a sitting position, d4552 Running, d4500 Walking short distances, and d4501 Walking long distances.

Other ICF activities and participation codes that may be associated with nonarthritic hip joint pain are:
- d2303 Completing the daily routine
- d4101 Squatting
- d4154 Maintaining a standing position
- d4302 Carrying in the arms
- d4303 Carrying on shoulders, hip and back
- d4351 Kicking
- d4502 Walking on different surfaces
- d4551 Climbing
- d4553 Jumping
- d4600 Moving around within the home
- d4601 Moving around within buildings other than home
- d4602 Moving around outside the home and other buildings
- d465 Moving around using equipment
- d5204 Caring for toenails
- d5400 Putting on clothes
- d5401 Taking off clothes
- d5402 Putting on footwear
- d5403 Taking off footwear
- d5701 Managing diet and fitness
- d9201 Sports
- d9209 Recreation and leisure
Impairment/Function-Based Diagnosis

INTRODUCTION
For the purposes of these guidelines, nonarthritic hip joint pain refers to a collection of hip pain conditions proposed to involve intra-articular structures of the hip, including femoroacetabular impingement, structural instability, labral tears, chondral lesions, and ligamentous tears. Recent advances in imaging and surgical techniques have resulted in better identification of potential contributors to hip joint pain; however, evidence to definitively associate pathology noted on imaging with hip joint pain and related activity limitations has not been established. Diagnoses of nonarthritic hip joint conditions are made by clinicians based on a combination of imaging and clinical findings, even though there is no consensus on the diagnostic criteria to rule in or rule out a specific condition. Despite this limitation, surgical intervention to address nonarthritic hip joint pain has grown exponentially, although evidence to suggest that surgical intervention is superior to nonsurgical management is not available. Given these limitations, clinicians must be disciplined in their evaluation to verify the presence of a relevant relation between the patient’s reported activity limitations and his or her examination findings.

The scope of these guidelines is limited to literature specific to nonarthritic hip joint conditions. Although recognized that other examination and intervention procedures reported to be useful in other musculoskeletal disorders of the pelvis and hip region may be appropriate for patients with nonarthritic hip pain, the focus of these clinical guidelines is to analyze the literature and make recommendations specifically related to nonarthritic hip joint pain. It is also acknowledged that there is a growing body of research on pain science, and this literature may be appropriate for patients with nonarthritic hip joint pain.

PATHOANATOMICAL FEATURES
Understanding the complex relationship among the labrum, the bony architecture of the acetabulum and femur, as well as the proximate soft tissues, such as the ligaments and muscles, is important for diagnosis and optimal treatment of individuals with mechanical hip pain.

The proximal femur articulates with the acetabulum to form the hip joint. The femoral head is two thirds of a sphere covered with hyaline cartilage and enclosed in a fibrous capsule. The femoral head is connected to the femoral shaft via the femoral neck. In the frontal plane, the femoral neck lies at an angle to the shaft of the femur. This “angle of inclination” is normally 120° to 125° in the adult population. In the transverse plane, the proximal femur is oriented anterior to the distal femoral condyles as a result of a medial torsion of the femur, with a normal range between 14° and 18° of anteversion. The hip joint is a “ball and socket” synovial joint with articular cartilage and a fully developed joint capsule, allowing movement in all 3 body planes.

The articular cartilage of the femoral head is thickest in the anterior-superior region, except where it is absent at the fovea capitis. In normal individuals, the cartilage is thickest in the central portion around the ligamentum teres. This corresponds to the area of maximum weight-bearing forces. The articular cartilage of the acetabulum is horseshoe shaped and thickest superiorly. It is continuous with the cartilage that lines the acetabular labrum. Articular cartilage is avascular and aneural.

The joint capsule attaches around the acetabular rim proximally and distally at the intertrochanteric line. Along with the labrum, the capsule provides passive stability to the hip joint. The iliofemoral, ischiofemoral, and pubofemoral ligaments assist the capsule in providing stability to the joint. These 3 strong ligaments reinforce the joint capsule, the iliofemoral and pubofemoral ligaments anteriorly, and the ischiofemoral ligament posteriorly.

Control of the hip during movement involves complex interactions between the nervous, muscular, and skeletal systems. The 27 muscles that cross the hip joint act as primary movers and dynamic stabilizers of the hip and lower extremity. The gluteus medius is the primary source of dynamic stabilization for the hip joint in the frontal plane. Weakness of this muscle has been traditionally implicated as playing a role in functional impairments. The iliofemoral complex is the primary hip flexor and may play a role in stabilizing the femoral head anteriorly, given its location across the anterior hip joint. The gluteus maximus is the most powerful hip extensor. The hip external and internal rotators’ role in stabilization may become more crucial when the acetabular labrum.
Nonarthritic hip joint pain may be related to numerous underlying causes, such as femoroacetabular impingement, and structural instability. Structural variations of the proximal femur or acetabulum may result in a femoroacetabular impingement, which is described as abnormal contact between the femoral head and neck and the acetabulum and has been associated with labral and chondral damage. Osseous abnormalities proposed to contribute to labral tears due to femoroacetabular impingement include bony malformations in the proximal femur or the acetabulum, resulting in premature abutment of the femoral neck into the acetabulum during the motion of hip flexion with internal rotation. The presence of a slipped capital femoral epiphysis has also been noted to cause femoroacetabular impingement. With repetitive motions into the position of impingement, the acetabular labrum will undergo excessive shear and compressive forces, which may lead to eventual injury. Femoroacetabular impingement has been further classified into 3 categories, based on the specific osseous abnormality present. Cam impingement is the result of asphericity of the femoral head, which is often related to a slipped capital femoral epiphysis or other epiphyseal injury or protrusion of the head-neck junction occurring at the proximal femur. Pincer impingement is the result of acetabular abnormalities, such as general (protrusio) and localized anterosuperior acetabular overcoverage of the femur (acetabular retroversion), which are described in more detail in the Imaging section. Excessive acetabular coverage anteriorly may result in premature abutment of the femoral neck on the anterior acetabular rim. Impingement may be more pronounced when relative femoral retroversion and anteversion are, respectively, combined with acetabular retroversion and anteversion. The third category is a combination of the cam and pincer impingement, which is likely the most common category. Radiographic evidence of femoroacetabular impingement is common in active patients with hip complaints. Studies have suggested that the abnormal movement at the hip joint occurring secondary to femoral acetabular impingement may lead to labral lesions and cartilage damage. The end stage of this process may lead to the development of secondary hip joint osteoarthritis (OA).

Gender differences have been described in individuals with labral tears secondary to osseous abnormalities. Cam impingement morphology is twice as prevalent in males than in females. Pincer lesions are more common in middle-aged, active women. In the North American population, the most common area of labral tears occurs in the anterior-superior (weight-bearing) region of the labrum. In 2 studies with limited sample sizes (n ≤ 8), labral tears in the Japanese population have been reported at a greater frequency in the posterior region.

Femoroacetabular Impingement

Structural variations of the proximal femur or acetabulum may result in a femoroacetabular impingement, which is described as abnormal contact between the femoral head and neck and the acetabulum and has been associated with labral and chondral damage. Osseous abnormalities proposed to contribute to labral tears due to femoroacetabular impingement include bony malformations in the proximal femur or the acetabulum, resulting in premature abutment of the femoral neck into the acetabulum during the motion of hip flexion with internal rotation. The presence of a slipped capital femoral epiphysis has also been noted to cause femoroacetabular impingement. With repetitive motions into the position of impingement, the acetabular labrum will undergo excessive shear and compressive forces, which may lead to eventual injury. Femoroacetabular impingement has been further classified into 3 categories, based on the specific osseous abnormality present. Cam impingement is the result of asphericity of the femoral head, which is often related to a slipped capital femoral epiphysis or other epiphyseal injury or protrusion of the head-neck junction occurring at the proximal femur. Pincer impingement is the result of acetabular abnormalities, such as general (protrusio) and localized anterosuperior acetabular overcoverage of the femur (acetabular retroversion), which are described in more detail in the Imaging section. Excessive acetabular coverage anteriorly may result in premature abutment of the femoral neck on the anterior acetabular rim. Impingement may be more pronounced when relative femoral retroversion and anteversion are, respectively, combined with acetabular retroversion and anteversion. The third category is a combination of the cam and pincer impingement, which is likely the most common category. Radiographic evidence of femoroacetabular impingement is common in active patients with hip complaints. Studies have suggested that the abnormal movement at the hip joint occurring secondary to femoral acetabular impingement may lead to labral lesions and cartilage damage. The end stage of this process may lead to the development of secondary hip joint osteoarthritis (OA).

Structural Instability

Hip instability may be defined as extraphysiologic hip motion that causes pain with or without the symptom of hip joint unsteadiness. Hip instability may be traumatic, atraumatic, or secondary to bony or soft tissue abnormality. Factors related to structural instability of the joint include a shallow acetabulum and an excessive femoral anteversion. Excessive acetabular anteversion or retroversion, inferior acetabulum insufficiency, and a neck shaft angle greater than 140° may also be a component of structural instability. Determination of femoral version is further described in the Imaging section of this guideline. These conditions, particularly when combined with repetitive forceful activities, have been associated with the development of labral tears.

A shallow acetabulum (acetabular dysplasia) has been associated with labral tears due to structural instability. In a hip with structural instability, insufficient coverage of the femoral head may result in repetitive shear stresses to the acetabular labrum as it attempts to maintain the congruent relationship between the femur and the acetabulum. Insufficient coverage may present as decreased anterior coverage with excessive acetabular anteversion or decreased posterior coverage with acetabular retroversion. Continued repetitive stresses may result in further instability of the hip joint. Structural instability due to dysplasia is thought to be more common in females.

The presence of dysplasia in adult individuals with hip pain has been discussed. In a cross-sectional study by Jacobsen and Sonne-Holm, the prevalence of hip joint dysplasia ranged from 5.4% to 12.8%. Birrell et al found the prevalence of dysplasia in patients with an initial complaint of hip pain to be 32%. They also found no difference in the prevalence...
Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

lence of acetabular dysplasia between men and women in the symptomatic population. In a prospective multicenter study utilizing clinical and radiographic examination of the hip joint for 292 patients between the ages of 16 and 50 years, the rate of dysplasia was 35%.

Femoral Version

Excessive anteverision of the femur is characterized by an increased amount of femoral internal rotation range of motion and a limitation in femoral external rotation range of motion. Excessive retroversion of the femur will result in the opposite limitation: increased femoral external rotation range of motion and decreased femoral internal rotation range of motion. A significant limitation in femoral rotation range of motion due to excessive femoral anteverision or retroversion may place an individual at risk for labral injury and increase their risk for developing hip OA.

Acetabular Labral Tears

The acetabular labrum is a fibrocartilaginous structure that extends from the osseous rim of the acetabulum and serves multiple functions. The labrum structure deepens the socket of the hip joint and acts as a buffer, decreasing forces transmitted to the articular cartilage. In addition to deepening the socket component of the hip joint, the acetabular labrum also creates an environment of negative intra-articular pressure, creating a seal. The labrum also contains free nerve endings that have been suggested to play a potential role in proprioception and potential sources of pain.

Acetabular labral tears have recently been identified as a potential source of hip pain and a possible precursor to hip OA. Although true estimates of the prevalence of labral tears are not currently available, in patients with mechanical hip pain, the prevalence of labral tears has been reported to be as high as 90%,

Ruptured Ligamentum Teres

The ligamentum teres originates from the edges of the acetabular notch and transverse acetabular ligament and attaches onto the fovea capitis of the femoral head. Though traditionally thought to play a minimal role in joint function, more recent findings suggest that this structure may play a role in stabilization. The ligamentum teres may be a strong intrinsic stabilizer that resists hip joint subluxation forces. It has the potential to act as a strong intra-articular ligament and an important stabilizer of the hip, particularly when the hip is externally rotated in flexion or internally rotated in extension. Several theories have been proposed to describe the exact function of the ligamentum teres, including a role in providing a “sling-like” stabilization of the hip joint as it wraps around the femoral head. Martin et al utilized a ball-and-string model to demonstrate these potential functions of the ligamentum teres. Patients with tears of the ligamentum teres may develop hip microinstability. This condition of compromised stability, when combined with recreational and sports activities, may result in damage to the labrum and cartilage. This process may possibly explain the high association rate between tears of the ligamentum teres, those individuals who subject the hip joint to specific repetitive stress. Narvani et al found acetabular labral tears to be the cause of symptoms in 20% of athletes presenting with groin pain.

Labral tears may be seen in individuals throughout the age span; however, increasing age may be associated with the prevalence of labral tears. Tears have been observed in up to 96% of older individuals. In another study, 88% of patients older than 30 years were found to have labral detachment from the articular cartilage.

The diagnosis of a labral tear is often delayed, and it is often misdiagnosed. Recent advances in imaging have resulted in better identification of labral tears. Lage et al described a system of classifying acetabular labral tears. The 4 classifications are: radial flap, radial fibrillated, longitudinal peripheral, and abnormally mobile (partially detached). Radial flap tears, where the free margin of the labrum is disrupted, are the most commonly observed. Radial fibrillated tears involve characteristic fraying of the free margin of the labrum. Abnormally mobile tears are partially detached from the acetabular surface. The least common noted were longitudinal peripheral tears, which involve a tear along the acetabular-labral junction. Criteria to classify acetabular labral tears have been established; however, more research is needed to establish the association between labral tears and hip joint pain and to determine if labral tears are a risk factor for hip OA.
labral tears, and cartilage injury. Injuries to the ligamentum teres are generally considered rare. Rao et al found ligamentum teres injury in less than 8% of arthroscopy cases. Orthopaedic surgeons have reported a ruptured ligamentum teres as a significant arthroscopic finding in individuals reporting hip pain and dysfunction. Acute tearing of this structure has been described, but the correlation between injuries to the ligamentum teres and clinical presentation is not well understood.

Chondral Lesions
Little is known about the prevalence of isolated chondral lesion (focal loss of cartilage on the articular surfaces); however, McCarthy et al found that 73% of patients with fraying or tearing of the labrum also had chondral damage. Anterior-superior cartilage lesions have been associated with dysplasia, anterior joint laxity, and the presence of femoroacetabular impingement. The combination of labral tears present greater than 5 years and full-thickness chondral lesions in those with higher alpha angles correlates with a greater magnitude of decreased hip range of motion, chondral damage, labral injury, and progression of OA. Chondral lesions have been reported in younger, more active individuals as a source of hip pain. A traumatic injury pattern involving acute overloading through impact sustained by a blow to the greater trochanteric region has been described. This clinical hypothesis has been supported by arthroscopic findings.

Loose Bodies
The presence of loose bodies (small fragments of bone or cartilage within the joint) has been implicated as a disrupter of joint function in individuals presenting with hip pain. Numerous underlying mechanisms have been described. Though the specific mechanisms underlying their presence may vary, their potential for being a cause of pain and/or mechanical disruption should be considered. Loose bodies, ossified and nonossified, may be present in the joint secondary to a number of factors. Single fragments typically occur in the case of dislocation or osteochondritis dissecans. Multiple fragments are more common in conditions such as synovial chondromatosis.

RISK FACTORS
With the exception of traumatic injury, the specific cause of nonarthritic hip disorders is not clearly understood. Potential risk factors have been proposed. However, there is only minimal evidence to substantiate the relationship of these potential risk factors to nonarthritic hip joint disorders.

Femoroacetabular Impingement

Genetics
Previous investigation has established the genetic influence on severe osseous abnormalities, such as slipped capital femoral epiphysis and acetabula protrusion, but limited evidence exists specific to milder abnormalities. In a study, Pollard et al compared the radiographs of patients with symptomatic femoroacetabular impingement to 2 groups: 1 group included the patient’s siblings, and the second group included spouses of the patients and the siblings. Compared to the spouse controls, the siblings demonstrated a greater relative risk for cam and pincer deformity, respectively, suggesting that genetics is a possible risk factor for femoroacetabular impingement.

Sex
The individual’s sex may influence the type of osseous abnormality. Hack et al studied 200 asymptomatic volunteers and found that the prevalence of cam deformities was higher in men (25%) than in women (5.4%). In a cross-sectional, population-based study, a substudy of the Copenhagen City Heart Study I-III, Gosvig et al reported the prevalence estimates of osseous abnormalities by sex. More women (19%) demonstrated a deep acetabular socket (pincer deformity) than men (15%). More men (20%) demonstrated a pistol-grip (cam) deformity than women (5%).

Structural Instability

Genetics
Genetic factors have long been recognized in the etiology of dysplasia, particularly in the more severe cases such as congenital hip dislocation. Although studies are not available to demonstrate the genetic influence on milder forms of acetabular dysplasia thought to contribute to structural instability, it is likely that genetic factors play a role in structural instability.

Ligamentous Laxity
Ligamentous laxity of the hip joint, global or focal, has been proposed as a risk factor for the development of acetabular labral tears. Global ligamentous laxity due to connective tissue disorders, such as Ehlers-Danlos, Down, and Marfan syndromes, has been implicated as a risk factor in the development of acetabular labral tears. A correlation between acetabular labral tears and focal rotational laxity has been suggested. The focal laxity most commonly occurs as anterior capsular laxity secondary to...
repetitive movements involving hip external rotation and/or extension, possibly resulting in iliofemoral ligament insufficiency.[30,37] Although uncommon, repeated, forced hip internal rotation in flexion may also be a harmful repetitive movement. When insufficiency is present, the ligament’s ability to absorb stress is compromised, potentially subjecting the labrum to abnormal stress and pathology.[51]

Intra-articular Injury (Acetabular Labral Tear, Ruptured Ligamentum Teres, Loose Bodies, Chondral Lesions)

Osseous Abnormalities

While osseous abnormalities of the femur or acetabulum have been proposed to contribute to intra-articular hip disorders, causation has not been demonstrated. Many believe osseous abnormalities precede intra-articular pathology. Others hypothesize that intra-articular pathology precedes osseous abnormalities.[195] Studies to demonstrate the temporal relationship between osseous abnormalities and intra-articular lesions are not available; however, there is evidence to suggest a relationship between osseous abnormalities and intra-articular lesions. Descriptive studies based on retrospective observations report that osseous abnormalities were present in up to 87\% of patients presenting with labral tears.[196] Guevara et al[35] assessed the radiographs of people with labral tear and compared the bony morphology of the involved hip to the uninvolved hip. Compared to the uninvolved side, hips with labral tears had a higher prevalence of osseous abnormalities associated either with dysplasia (structural instability) or femoroacetabular impingement.

Osseous Abnormalities Associated With Femoroacetabular Impingement

Visual assessment and computer modeling have been implemented to assess location of injury and femoroacetabular impingement. Through intraoperative visual assessment, labral and articular cartilage damage has been shown at the site of impingement, where the femoral neck abuts the acetabular rim. In a retrospective study, Tannast et al[185] used computer simulation to predict the impingement zone in 15 subjects and compared their predicted impingement zone to the location of labral and cartilage damage in 40 different subjects. They found the computer-predicted impingement zone to be similar to the location of labral and cartilage damage in the sample of 40 subjects. The most severe damage was located in the zone with the highest probability of impact related to femoroacetabular impingement, the anterosuperior area of the acetabulum. Sink et al[197] used visual inspection of hip motion intraoperatively and determined that the anterosuperior cartilage damage coincided with the area of impingement when the hip was positioned into flexion and internal rotation.

Other observational studies suggest a relationship between intra-articular lesions and cam impingement specifically. Anderson et al[18] performed a multivariable logistic regression to assess the correlation between radiographic findings and articular cartilage delamination. The study sample included 62 patients with the preoperative diagnosis of femoroacetabular impingement or related disorder. Delamination was found to be associated with femoral-side (cam) findings (odds ratio = 11.87); however, delamination was not associated with acetabular overcoverage (pincer) findings (odds ratio = 0.16). These findings suggest that cam impingement increases the risk of articular cartilage delamination; however, pincer impingement may be protective of the cartilage. This study, however, did not assess the association of the bony morphology with the other intra-articular lesions, such as labral tears. Ito et al[190] also showed a link between femoral-side findings and intra-articular lesions. In their study, patients with the clinical presentation of femoroacetabular impingement and a labral tear demonstrated a reduced head-neck offset anteriorly compared to asymptomatic controls.

Osseous Abnormalities Associated With Structural Instability

There are no known studies to demonstrate an association between structural instability and nonarthritic or intra-articular hip disorders. However, the presence of acetabular retroversion in a person with dysplasia may place the hip joint structures at risk. Fujii et al[19] reported that individuals with acetabular retroversion, defined in their study as localized anterosuperior acetabular overcoverage of the femur, had an earlier onset of hip pain.

Other Osseous Abnormalities

Although femoral version has been studied extensively in the pediatric population, little research has been performed in the adult population. Abnormal version of the femur, either excessive anteversion or retroversion, may result in abnormal stresses on the hip joint. Ito et al[179] reported that patients with the clinical presentation of femoroacetabular impingement and confirmed labral tears demonstrated a significantly reduced femoral version (retroversion) compared to asymptomatic control subjects.

Activity and Participation

Activities such as distance running, ballet, golf, ice hockey, and soccer have been implicated in articular cartilage damage.[64,125,130] Some authors have proposed that a specific direction of hip motion related to the suspected activities may be responsible for the increased risk; these directions include rotational stresses,[130] hyperextension,[64,108] and hyperflexion.[78,108]
Clinicians should consider the presence of osseous abnormalities, local or global ligamentous laxity, connective tissue disorders, and nature of the patient's activity and participation as risk factors for hip joint pathology.

DIAGNOSIS/CLASSIFICATION

The diagnosis of femoroacetabular impingement and the associated International Classification of Functioning, Disability and Health (ICF) diagnosis of joint pain and mobility impairment can be suspected when the patient presents with the following clinical and radiographic findings:

- Pain in the anterior hip/groin and/or lateral hip/trochanter region is reported
- Pain is described as aching or sharp
- The reported hip pain is aggravated by sitting
- The reported pain is reproduced with the hip flexion, adduction, internal rotation (FADIR) test
- Hip internal rotation is less than 20° with the hip at 90° of flexion
- Hip flexion and hip abduction are also limited
- Mechanical symptoms such as popping, locking, or snapping of the hip are present
- Conflicting clinical findings are not present
- Radiographic findings:
 - Cam impingement
 - Increased femoral neck diameter that approaches the size of the femoral head diameter
 - Alpha angle greater than 60°
 - Head-neck offset ratio less than 0.14
 - Pincer impingement
 - Increased acetabular depth
 - Coxa profunda (lateral center-edge angle greater than 35°)
 - Acetabular protrusion
 - Tönnis angle less than 0°
 - Acetabular retroversion
 - Crossover sign indicating localized anterosuperior overcoverage
 - Ischial spine projection into the pelvis

The diagnosis of structural instability and the associated ICF diagnosis of joint pain and mobility impairment can be suspected when the patient presents with the following clinical and radiographic findings:

- Anterior groin or lateral hip pain or generalized hip joint pain
- The reported pain is reproduced with the FADIR test or the FABER test
- Hip apprehension sign is positive
- Hip internal rotation is greater than 30° when the hip is at 90° of flexion
- Mechanical symptoms such as popping, locking, or snapping of the hip are present
- Conflicting clinical findings are not present
- Radiographic findings:
 - Increased acetabular inclination
 - Tönnis angle greater than 10°
 - Decreased femoral head coverage
 - Lateral center edge of Wiberg less than 25°
 - Anterior center-edge angle less than 20°

The diagnosis of intra-articular injury (labral tear, osteochondral lesion, loose bodies, and ligamentum teres rupture) and the associated ICF diagnosis of joint pain can be provided when the patient presents with the following clinical and imaging findings:

- Anterior groin pain or generalized hip joint pain
- Pain is reproduced with the FADIR test or the FABER test
- Mechanical symptoms such as popping, locking, or snapping of the hip are present
- May report feelings of instability (ligamentum teres) and the sensation of instability when squatting
- Conflicting clinical findings are not present
- Imaging findings:
 - Labral tear
 - Magnetic resonance arthrography (MRA)

Clinicians should use the clinical findings of anterior groin or lateral hip pain or generalized hip joint pain that is reproduced with the FADIR or FABER test, along with corroborative imaging findings, to classify a patient with hip pain into the International Statistical Classification of Diseases and Related Health Problems (ICD) categories of M25.5 Pain in joint, M24.7 Protrusio acetabula, M24.0 Loose body in joint, and M24.2 Disorder of ligament, and the associated ICF impairment-based category of hip pain (b28016 Pain in joints) and mobility impairments (b7100 Mobility of a single joint; b7150 Stability of a single joint).

DIFFERENTIAL DIAGNOSIS

Potential differential diagnoses for nonarthritic hip joint pain are:

- Referred pain from lumbar facet disorders
- Referred pain from lumbar disc disorders
- Sacroiliac joint dysfunction
- Pubic symphysis dysfunction

...
Clinicians should consider diagnostic categories other than nonarthritic joint pain when the patient's history, reported activity limitations, or impairments of body function and structure are not consistent with those presented in the Diagnosis/Classification section of this guideline or when the patient's symptoms are not diminishing with interventions aimed at normalization of the impairments of body function.

IMAGING STUDIES

Imaging studies are used in conjunction with clinical findings to rule out serious diagnoses such as a cancer, osteonecrosis, or fracture. Imaging may also provide information regarding the bony structure of the femur and acetabulum as well as related soft tissue. Information from imaging studies should be evaluated in the context of the entire clinical presentation, where the clinician should have an understanding of imaging applications, associated results, and how these applications and results affect clinical decisions related to patient management—acknowledging that, often, findings from imaging are incidental and impact patient management only to the extent of providing education and reassurance to the patient.

Plain radiographs are the first imaging study in the differential diagnostic procedures. Radiographs are useful in detecting femoral and acetabular abnormalities associated with nonarthritic hip joint pain. Plain radiographs do not provide adequate detail regarding soft tissue morphology. Noncontrast magnetic resonance imaging (MRI) provides better detail for assessing soft tissue integrity; however, it has not been used extensively to assess intra-articular structures. MRA is commonly used to detect changes of the intra-articular structures. Techniques such as computed tomography and delayed gadolinium-enhanced MRI of cartilage have recently been implemented to assess articular cartilage integrity and assist with presurgical planning.

To detect osseous abnormalities, specific radiographic views are needed in addition to the standard hip protocol. Specific images to consider include (1) cross-table lateral view, (2) 45° or 90° Dunn view, (3) “frog” lateral view, and (4) false-profile view. These specific views allow the diagnosis of osseous abnormalities, such as femoroacetabular impingement and structural instability, proposed to be associated with nonarthritic hip joint pain. The osseous abnormalities are described below. The clinician is encouraged to refer to Clohisy et al for a thorough description of the measurement methods and representative figures. An alternative view has recently been introduced to measure the distance between the femoral neck and the acetabular rim when the hip is in 90° of flexion. It should be noted that variations of suggested normal measurements exist within the literature. In addition, the relationship between pain and bony abnormalities has not been fully established.

Measurements may be taken to evaluate for hip dysplasia, including the Tönnis angle (abnormal, greater than 10°), the lateral center-edge angle of Wiberg (abnormal, less than 25°), and the anterior center-edge angle of Lequesne (abnormal, less than 25°), as measured on a false-profile radiograph. The neck-shaft angle of the proximal femur is considered normal between 120° and 140°. Radiographic images for hip femoro-acetabular impingement and structural instability have been published.

Radiographic findings that support the clinical diagnosis of pincer femoroacetabular impingement include increased acetabular depth, decreased acetabular inclination, and acetabular retroversion. Acetabular depth, inclination, and retroversion are all assessed on the anterior/posterior view. Acetabular depth is determined by observing the relationship of the floor of the acetabulum and femoral head. Acetabular protrusion represents a deep acetabulum and is suggestive of pincer femoroacetabular impingement. Acetabular inclination is assessed using the Tönnis angle. Acetabuli having a Tönnis angle of 0° to 10° are considered normal, whereas those having an angle greater than 10° or less than 0° are considered increased and decreased, respectively. Hips with an increased Tönnis angle were considered to be at risk for structural instability, whereas those having a decreased in-
clination were considered at risk for pincer impingement.85 Pincer-type femoroacetabular impingement (acetabular retroversion or protrusio) is identified using the presence of a crossover sign, lateral center-edge angle greater than 39\textdegree, or an acetabular index less than or equal to zero.158

Acetabular retroversion may also contribute to pincer impingement. Acetabular retroversion has been described as either local or general retroversion. Local retroversion results in overcoverage of the femoral head in the anterosuperior region of the acetabulum. On the anterior/posterior radiograph, this appears as the crossover sign or the figure-of-eight sign.44 The crossover sign occurs if the line representing the anterior acetabular wall crosses the line representing the posterior acetabular wall, resulting in an “X” appearance. Radiographic assessment of ischial spine projection into the pelvis has been suggested as another method of identifying acetabular retroversion.85 Kalberer et al85 noted that the ischial spine sign is not only a periacetabular phenomenon but also could represent a malrotation of the whole hemipelvis. The general type of retroversion64 results in a more generalized overcoverage of the femoral head anteriorly.

The radiographic finding to support cam impingement is an increased thickness of the femoral head-neck junction. The most commonly reported measure to represent the femoral head-neck junction is the alpha angle,44 which may be measured on the frog-leg lateral view56 or the 90\textdegree Dunn view.2 A large alpha angle, greater than 60\textdegree, is suggestive of a cam impingement.2,157 Head-neck offset ratio, measured on the cross-table lateral view, is another measure to represent the femoral head-neck junction.45 A head-neck offset ratio less than 0.14 is suggestive of femoroacetabular impingement.157

The radiographic finding to support the clinical diagnosis of structural instability is an increased acetabular inclination. Acetabular inclination may be assessed using the Tönnis angle290 or the lateral center-edge angle of Wiberg,597 both assessed from the anterior/posterior view. A Tönnis angle greater than 10\textdegree or a lateral center-edge angle less than 25\textdegree may indicate inadequate acetabular coverage of the femoral head.18,191

MRI is useful in detecting musculotendinous pathology, such as iliopsoas tendinopathy. Although MRI is not used widely to detect intra-articular injury, some investigators report high accuracy (89\%-95\%) in detecting labral tears.92,100 Currently, the most common imaging procedure used to confirm the diagnosis of intra-articular pathology, such as labral tears or chondral lesions, is MRA.75,206 Contrast is injected into the hip joint to allow better visualization of the intra-articular structures. Compared to the gold standard of arthroscopic visual inspection, MRA has a sensitivity of 71\% to 100\%,16,38,57,87 and a specificity of 44\% to 71\%,38,87 in detecting a labral tear. All subjects in these studies had a clinically suspected labral tear. In a small cadaveric study, MRA demonstrated 60\% sensitivity, 100\% specificity, and 70\% accuracy.55 In the same study, conventional MRI with a large field of view was 8\% sensitive in detecting labral tears compared with findings at the time of arthroscopy. Diagnostic sensitivity was improved to 25\% with a small-field-of-view MRA. In addition to soft tissue integrity, MRI or MRA may be used to detect osseous abnormalities previously described, such as the alpha angle69 or acetabular retroversion.145,193

Computed tomography may be used to determine the osseous architecture of the hip. Current technologies allow for 3-D reconstruction of the hip anatomy and thus provide additional information that is useful in presurgical planning. Due to significantly higher radiation exposure with computed tomography as compared to other imaging modalities, it has not been widely used in the diagnosis of nonarthritic hip joint pain and is most often reserved just for presurgical planning.97,186

The use of image-guided injections for the purpose of diagnosis has been described. The injections consist of a local anesthetic and possibly a corticosteroid. Preinjection and postinjection levels of pain are examined, with a notable and immediate decrease of pain considered indicative of chondral damage within the hip joint. With this approach, Kivlan et al94 found that individuals with chondral damage displayed a greater relief of pain compared to their counterparts without chondral damage. This was found to be independent of the presence of extra-articular pathology. The clinician should consider the role of injection therapy in patient management, particularly if improvement in pain is delayed or impacting the ability to restore optimal functioning.

CLINICAL COURSE

The clinical course of nonarthritic hip disorders has not been described. Femoroacetabular impingement9 and labral tears126 are both proposed to contribute to OA. A shallow acetabulum and resulting acetabular dysplasia have been shown to be associated with OA of the hip joint in relatively younger patients.69,215 Further research is needed to understand the clinical course of nonarthritic hip disorders.

CLINICAL MANAGEMENT

The management of nonarthritic hip joint disorders is highly variable. A period of nonsurgical management is recommended, of at least 8 to 12 weeks, prior to consideration of surgical intervention.64,68 Nonsurgical management includes physical therapy as well as medication and, later, if indicated, ultrasound/fluoroscopic-guided179 therapeutic injections. If
Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

Symptoms do not improve with nonsurgical care, surgical intervention may be considered.

Recent advances in imaging and surgical techniques have led to an increase in surgical management for nonarthritic hip joint disorders. Although evidence related to favorable surgical outcomes is growing, the literature is limited primarily to observational studies with small sample sizes and short-term outcomes. The presence of pathology on imaging in individuals with nonarthritic hip pain, which is refractory to nonsurgical management, needs careful patient selection if surgery is contemplated to optimize the potential for a favorable outcome.

Anti-inflammatory agents are often recommended for pain relief and inflammation; however, evidence to support this intervention in patients with nonarthritic hip pain is lacking. Both over-the-counter and prescribed anti-inflammatory agents, including nonsteroidal anti-inflammatory drugs and COX-2 inhibitors, may be prescribed as part of a treatment program. However, it should be noted that this class of drugs is not without risk for serious adverse events, including increased gastrointestinal bleeding.

Common surgical options include arthroscopic procedures such as labral tear resection or repair, capsular modification, osteoplasty to address femoroacetabular impingement, ligamentum teres tear debridement, and loose-body removal. In addition, a periacetabular osteotomy procedure may be performed to address acetabular dysplasia. The purpose of this open procedure is to surgically separate the acetabulum from the innominate, then reattach the structure in a position that provides ideal coverage of the femoral head, providing closer-to-normal stability of the hip joint.

Of the available arthroscopic procedures, labral tear resection has the most supporting evidence. This procedure is typically utilized for fraying or peripheral tears of the labrum. Studies have shown clinical improvement following labral resection. Intrasubstance tears of the labrum may be repaired. More recently, labral repair in combination with osteoplasty of the acetabular rim and/or the femoral head-neck junction has become a common surgical procedure for treating femoroacetabular impingement and its associated intra-articular abnormalities.

Limited evidence is available to support favorable outcomes in individuals undergoing resection of labral tears combined with capsular modification. An osteoplasty procedure may be performed to remove the excessive bone present in the case of impingement. Early results for this procedure have been promising. A systematic review by Ng et al. found that surgical treatment of femoroacetabular impingement reliably improved patients’ symptoms.

Arthroscopic debridement of ligamentum teres tears has been described. The goal of the surgery is to resect the tear to a stable remnant, preventing potential painful disruption of joint mechanics. Promising results have been reported in patients with isolated injury who do not have other concurrent conditions, such as osteochondral defects. Microfracture techniques have been described for medium-size, full-thickness chondral defects. No current studies exist examining the outcomes for microfracture procedures of the hip joint.
OUTCOME MEASURES

Hip Outcome Score

The Hip Outcome Score (HOS) is a self-report measurement tool consisting of 2 separate subscales for activities of daily living (ADL) and sports. The HOS was developed specifically to assess the ability of young individuals with acetabular labral tears and address the ceiling effect of the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). The ADL subscale contains 17 items; examples include walking on level surfaces, hills, stairs, getting in and out of a car, deep squat, heavy work, and recreational activities. The sports subscale contains 9 items; examples include running, jumping, cutting, and swinging a golf club. Each item is scored from 4 to 0, with 4 being "no difficulty" and 0 being "unable to do." There is a “nonapplicable” option that is not counted in scoring. The total number of items with a response is multiplied by 4 to get the highest potential score. An individual’s score is divided by the highest potential score, then multiplied by 100 to get a percentage. A higher score is representative of a higher level of physical function for each subscale.

The HOS subscales have high test-retest reliability (intraclass correlation coefficient [ICC] = 0.98 and 0.92 for the ADL and sports subscales, respectively). The minimal detectable change (MDC) is an increase or decrease of 3 points, and the minimal clinically important difference is 9 points on the ADL subscale and 6 points on the sports subscale.

Each subscale of the HOS demonstrated construct validity when compared to the Medical Outcomes Study 36-Item Short-Form Health Survey questionnaire. In patients with labral tears, the correlation coefficients between the ADL subscale and the Medical Outcomes Study 36-Item Short-Form Health Survey physical function and physical component scores were 0.76 and 0.74, respectively. The correlation coefficients between the sports subscale and the Medical Outcomes Study 36-Item Short-Form Health Survey physical function and physical component scores were 0.72 and 0.68, respectively.

Copenhagen Hip and Groin Outcome Score

The Copenhagen Hip and Groin Outcome Score (HAGOS) was developed in 2011 to assess a patient’s hip and groin disability in a young, active patient. The HAGOS is a disease-specific self-report questionnaire with the following 6 separately scored subscales: pain, other symptoms, physical function in daily living, function in sport and recreation, participation in physical activities, and hip-related quality of life. Each item is scored using standardized answer ranges from 0 to 4. A normalized score, with 100 indicating no symptoms, is calculated for each subscale.

The HAGOS has substantial test-retest reliability, with ICCs ranging from 0.82 to 0.91 for the 6 subscales. The smallest detectable change for the subscales ranges from 2.7 to 5.2, indicating that changes greater than 5.2 in any scale would be detectable. Construct validity and responsiveness were confirmed, with statistically significant correlation coefficients from 0.37 to 0.73 (P<.01) for convergent validity and, for responsiveness, from 0.56 to 0.69 (P<.01).

International Hip Outcome Tool

The International Hip Outcome Tool (iHOT-33) was developed in 2012 by the Multicenter Arthroscopy of the Hip Outcomes Research Network specifically for young, active adults with symptomatic hip disease. The iHOT-33 is a disease-specific self-report questionnaire with questions related to the following domains: symptoms and functional limitations; sports and recreational physical activities; job-related concerns; and social, emotional, and lifestyle concerns. Each item on the iHOT-33 is scored using a 100-point visual analog scale, where 100 indicates the best possible score.

The iHOT-33 has moderate to good test-retest reliability (ICC = 0.78 for the overall score). Convergent construct validity was confirmed, with a statistically significant correlation coefficient of 0.81 compared to the Nonarthritic Hip Score. The minimal clinically important difference after hip arthroscopy is 6 points. The properties of the subscales have not been assessed.

Modified Harris Hip Score

The Modified Harris Hip Score (MHHS) is a disease-specific self-report questionnaire with questions related to pain and functional ability. The original HHS developed to assess patient function...
after total hip arthroplasty, was modified by excluding the clinician’s judgment of deformity and range of motion. The modified HHS, therefore, allows the patient to complete the questionnaire independently. A single score is calculated, ranging from 0 to 100, where higher scores indicate better function. Approximately 48% of the modified HHS score is based on the patient’s description of his or her pain, and the remaining 52% is based on the ability to complete basic activities, including walking, stairs, and donning/doffing shoes and socks. The modified HHS does not capture the patient’s ability to perform higher-level tasks, such as heavy work or exercise activities. Although the modified HHS is the most commonly reported outcome measure in the current literature related to patients with nonarthritic hip joint pain, no studies have been reported on the reliability or validity of the measure in nonarthritic hip joint pain.

Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)

The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) is a self-report functional outcome questionnaire. A total score (score range, 0-96) and 3 scale scores representing pain (score range, 0-20), stiffness (score range, 0-8), and physical function (score range, 0-68) are generated. Lower scores represent better health or function. Scores for the scales and the total score may be normalized as a percentage. The WOMAC was originally developed to assess outcomes in patients after a total joint replacement and has limited validity for use in the individual with nonarthritic hip joint disease. A modified version with improved validity has been recently introduced, with further study needed to determine the reliability and responsiveness of the questionnaire.

Hip disability and Osteoarthritis Outcome Score (HOOS)

The Hip disability and Osteoarthritis Outcome Score (HOOS) was introduced in 2003 as a disease-specific self-report questionnaire that could be used for individuals with various types of hip pain. The HOOS includes all questions from the WOMAC, along with additional items thought to be useful in detecting limitations in higher-level activities, such as running, squatting, and pivoting. The current version of the HOOS (version 2) includes 40 items to assess 5 domains: symptoms (stiffness and range of motion), pain, function in daily living, function in sport and recreation, and hip-related quality of life. Each item is scored using standardized answer options scored from 0 to 4. A normalized score, with 100 indicating no symptoms, is calculated for each subscale. The HOOS may be preferred to the WOMAC due to its reduced ceiling effect compared to the WOMAC. Additionally, the WOMAC score can be calculated from the HOOS questionnaire if desired. The HOOS has been shown to have high test-retest reliability and adequate construct validity when used with older individuals; however, the psychometric properties of the HOOS in young adults are unknown. Recently, questions from the HOOS have been used to develop the HAGOS, a hip-specific score developed specifically for hip and groin disability in a young, active patient.

Clinicians should use a validated outcome measure, such as the HOS, the HAGOS, or the iHOT-33, before and after interventions intended to alleviate the impairments of body function and structure, activity limitations, and participation restrictions in individuals with nonarthritic hip joint pain.

Physical Impairment Measures

Trendelenburg Sign

- **ICF category:** measurement of impairment of body function: power of isolated muscles and muscle groups and control of complex voluntary movements.
- **Description:** the purpose is to assess ability of the hip abductors to stabilize the pelvis during single-limb stance.
- **Measurement method:** from standing, the patient performs single-limb stance by flexing the opposite hip to 30° and holding for 30 seconds. Once balanced, the patient is asked to raise the nonstance pelvis as high as possible. From the posterior view, the examiner observes the angle formed by a line that connects the iliac crest and a line vertical to the testing surface. Observation: the test is negative if the pelvis on the nonstance side can be elevated and maintained for 30 seconds. The test is positive if 1 of the following criteria are met: (1) the patient is unable to hold the elevated pelvic position for 30 seconds, (2) no elevation is noted on the nonstance side, (3) the stance hip addsucts, allowing the pelvis on the nonstance side to drop downwardly below the level of the stance-side pelvis. A false negative may occur if the patient is allowed to shift his or her trunk too far laterally over the stance limb. The patient may use light touch with the ipsilateral upper extremity, or the examiner may provide gentle manual pressure to maintain balance and reduce the trunk shift. Objective measurement: a goniometer may be used to quantify the amount of pelvic movement. The axis of the goniometer is placed on the anterior superior iliac spine, the stationary arm along an imaginary line between the 2 anterior superior iliac spine landmarks, and the moving arm along the anterior midline of the femur.
- **Nature of variable:** observation: nominal (positive/negative). Objective measurement: continuous.
- **Units of measurement:** observation: none. Objective measurement: degrees.
Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

• Measurement properties: objective measurement: Youdas et al. measured intratester reliability in healthy subjects. They reported that the intratester reliability for measurement of the hip adduction angle was 0.58 and standard error of measurement (SEM) was 2°. The MDC_{95} was 4°.204

Hip Flexion, Abduction, External Rotation (FABER) Test
- ICF category: measurement of impairment of body function: pain in joints and mobility of a single joint
- Description: a test to determine the movement/pain relation (irritability) of hip movements and mobility at the hip joint
- Measurement method: position and motion: the patient is positioned in supine, with the heel of the lower extremity just distal to the medial tibial condyle. The range-of-motion measurement is taken at the point of maximal passive resistance or at the point where the patient stopped the motion measurements to be excellent (ICC = 0.87; 95% CI: 0.78, 0.94).

Hip Flexion, Adduction, Internal Rotation (FADIR) Impingement Test
- ICF category: measurement of impairment of body function: pain in joints and mobility of a single joint
- Description: a test to assess for painful impingement between the femoral neck and acetabulum in the anterosuperior region. The FADIR test has also been used to assess for specific pathology of the acetabular labrum
- Measurement method: the patient is positioned in supine. The hip and knee are flexed to 90°. Maintaining the hip at 90° of flexion, the hip is then internally rotated and adducted as far as possible. The patient is asked what effect the motion has on symptoms. The test is considered positive if the patient reports a production of, or increase in, the anterior groin, posterior buttock, or lateral hip pain consistent with the patient’s presenting pain complaint. If the test is negative, the test is repeated with the hip placed in full flexion.

• Nature of variable: nominal (positive/negative)
• Units of measurement: none
• Measurement properties: Martin and Sekiya assessed the intertester reliability of the FABER test in people seeking care for intra-articular, nonarthritic hip joint pain. The examiners demonstrated 84% agreement and a kappa value of 0.63 (95% confidence interval [CI]: 0.43, 0.83), indicating substantial reliability. In a separate study, Martin et al. assessed the diagnostic accuracy of the FABER test. Using pain relief with a diagnostic injection as the comparison, the sensitivity and specificity of the FABER test were reported to be 0.60 (95% CI: 0.41, 0.77) and 0.18 (95% CI: 0.07, 0.39), respectively. The positive likelihood ratio was 0.73 (95% CI: 0.50, 1.1) and the negative likelihood ratio was 2.2 (95% CI: 0.8, 6). In their study to detect intra-articular hip pathology, including OA, Maslowski et al. also assessed the diagnostic accuracy of the FABER test. Using pain relief with a diagnostic injection as the comparison, the sensitivity and specificity of the FABER test were reported to be 0.82 (95% CI: 0.57, 0.96) and 0.25 (95% CI: 0.09, 0.48), respectively. The positive predictive value was 0.46 (95% CI: 0.28, 0.65) and the negative predictive value was 0.64 (95% CI: 0.27, 0.91). Mitchell et al. reported a slightly higher sensitivity (88%) when compared to intraoperative findings; however, there was no correlation to a specific hip joint pathology, such as labral or chondral lesions. Specific to range of motion: no studies were located reporting the measurement properties of the FABER for range of motion in people with nonarthritic hip joint pain. In a study of people with knee OA, Cliborne et al. reported the reliability of range-of-motion measurements to be excellent (ICC = 0.87; 95% CI: 0.78, 0.94).
tive likelihood ratio was 2.3 (95% CI: 0.52, 10.4). Compared to an MRA finding of labral lesion, the sensitivity and specificity of the FADIR test were 0.75 (95% CI: 0.19, 0.99) and 0.43 (95% CI: 0.18, 0.72). In their study to detect intra-articular hip pathology, including OA, Maslowski et al. also assessed the diagnostic accuracy of a test that is similar to the FADIR test, called the internal rotation with overpressure test. Using pain relief with a diagnostic injection as the comparison, the sensitivity and specificity of the internal rotation with overpressure test were reported to be 0.91 (95% CI: 0.68, 0.99) and 0.18 (95% CI: 0.05, 0.40), respectively. The positive predictive value was 0.88 (95% CI: 0.67, 0.98) and the negative predictive value was 0.17 (95% CI: 0.04, 0.40). Specific to mechanism contributing to nonarthritic hip joint pain (femoroacetabular impingement): no studies reporting the test characteristics specific to femoroacetabular impingement were located. In their descriptive study, Beck et al. assessed 19 subjects with the clinical diagnosis of femoroacetabular impingement, based on clinical exam, radiographs, and MRA. They found that all 19 subjects had a positive FADIR test corresponding to intraoperative dynamic impingement and labral lesions in the anterosuperior region of the hip joint.

Log-Roll Test
- ICF category: measurement of impairment of body structure: fasciae and ligaments of the hip
- Description: a test to determine ligamentous laxity
- Measurement method: the patient is positioned in supine with the hip and knee in 0° of extension. The hip is passively rotated internally and externally. The examiner ensures the rotation is occurring at the hip and not at the knee or ankle. The examiner notes any side-to-side difference in external rotation range of motion. The test is positive for ligamentous laxity when the involved hip demonstrates greater external rotation range of motion than the uninvolved hip.
- Nature of variable: nominal
- Units of measurement: none
- Measurement properties: Martin and Sekiya assessed the intertester reliability of the log-roll test in people seeking care for intra-articular, nonarthritic hip joint pain. The examiners demonstrated 80% agreement and a kappa value of 0.61 (95% CI: 0.48, 0.84), indicating substantial reliability.

Passive Hip Internal and External Rotation
- ICF category: measurement of impairment of body function: mobility of a single joint and pain in joints
- Description: the amount of hip rotation range of motion measured with the hip in 90° of flexion (sitting) and 0° of flexion (prone). The patient is also asked to rate the amount of pain experienced during the movement on a 0-to-10 numeric pain rating scale (NPRS)
- Measurement method:
 - Hip internal and external rotation in 90° of flexion: position and motion: the patient is positioned sitting with the hip at 90° of flexion. The hip measured is placed in 0° of abduction, and the contralateral hip is placed in about 30° of abduction. The reference knee is flexed to 90°, and the leg is passively moved to produce hip rotation. The sitting position assists to stabilize the pelvis, and the pelvis should be closely monitored to avoid pelvic movement. The tibiofemoral joint must also be controlled to prevent motion (rotation or abduction/adduction), which could be construed as hip rotation. The motion is stopped when the clinician reaches a firm end feel or when pelvic movement is necessary for additional movement of the limb. Measurement: the measurement may be taken with an inclinometer or a goniometer. The inclinometer is aligned vertically and along the shaft of theibia, and proximal to the medial malleolus, for both internal and external rotation range of motion. The axis of the goniometer is placed on the anterior aspect of the patella, the stationary arm is placed vertically so it is perpendicular to the supporting surface, and the movement arm is placed along the anterior midline of the lower leg.
 - Hip internal and external rotation in 0° of flexion: position and motion: the patient is positioned prone with heels over the edge of the treatment table. The hip being measured is placed in 0° of abduction, and the contralateral hip is placed in about 30° of abduction. The reference knee is flexed to 90°, and the leg is passively moved to produce hip rotation. Manual stabilization is applied to the pelvis to prevent pelvic movement and also at the tibiofemoral joint to prevent motion (rotation or abduction/adduction), which could be construed as hip rotation. The motion is stopped when the clinician reaches a firm end feel or when pelvic movement is necessary for additional movement of the limb. Measurement: the measurement may be taken with an inclinometer or a goniometer. The inclinometer is aligned vertically and along the shaft of the tibia, just proximal to the medial malleolus, for both internal and external rotation range of motion. The axis of the goniometer is placed on the anterior aspect of the patella, the stationary arm is placed vertically so it is perpendicular to the supporting surface, and the movement arm is placed along the anterior midline of the lower leg.
measurement properties of hip range of motion in individuals with nonarthritic hip joint pain. Studies reporting tester reliability in healthy adults and individuals with other musculoskeletal pain provide evidence of excellent intrarater reliability of hip rotation range-of-motion measurements. Ellison et al\(^{28}\) reported ICCs for hip internal and external rotation ranging from 0.96 to 0.99 in healthy individuals and 0.95 to 0.97 in people with low back pain. In patients with hip OA, Pua et al\(^{29}\) reported ICCs of 0.93 (95% CI: 0.83, 0.97; SEM, 3.4\(^{\circ}\)) and 0.96 (95% CI: 0.91, 0.99; SEM, 3.1\(^{\circ}\)) for internal and external rotation, respectively. The clinically important difference for the NPRS, derived from patients with low back pain, has been shown to be a reduction of 2 points.\(^{28,31}\)

Passive Hip Flexion and Passive Hip Abduction

- **ICF category:** measurement of impairment of body function: mobility of a single joint and pain in joints
- **Description:** measurement of the amount of passive hip flexion and hip abduction range of motion. The patient is also asked to rate the amount of pain experienced during the movement on a 0-to-10 NPRS
- **Measurement method:**
 - **Hip flexion:** position and motion: the patient is in the supine position and the hip in 0\(^{\circ}\) of abduction, adduction, and rotation. With the knee flexed, the hip is passively flexed while the lumbar spine is monitored to avoid posterior pelvic tilt. The motion is stopped when the clinician reaches a firm end feel or when pelvic movement is necessary for additional movement of the limb. Measurement: the axis of the goniometer is placed at the greater trochanter, the stationary arm is placed along the midline of the pelvis, and the moving arm along the midline of the femur.
 - **Hip abduction:** position and motion: the patient is positioned in supine with the hip in 0\(^{\circ}\) of flexion and rotation. With the knee extended, the hip is passively abducted. Manual stabilization is provided at the pelvis to prevent lateral pelvic tilt or pelvic rotation. The motion is stopped when the clinician reaches a firm end feel or when pelvic movement is necessary for additional movement of the limb. Measurement: the axis of the goniometer is placed at the greater trochanter, the stationary arm is placed along an imaginary line between the 2 anterior superior iliac spine landmarks, and the moving arm along the anterior midline of the femur.
- **Nature of variable:** continuous (range of motion), ordinal (pain)
- **Units of measurement:** degrees, 0-to-10 NPRS
- **Measurement properties:** there are no known studies reporting the measurement properties of hip range of motion in individuals with nonarthritic hip disorders. Studies reporting tester reliability in healthy adults and individuals with other musculoskeletal pain provide evidence of excellent intrarater reliability of hip flexion measurements. In patients with hip OA, Pua et al\(^{29}\) reported ICCs of 0.97 (95% CI: 0.93, 0.99; SEM, 3.5\(^{\circ}\)) and 0.94 (95% CI: 0.86, 0.98; SEM, 3.2\(^{\circ}\)) for flexion and abduction, respectively. The MDC for hip flexion, determined using 22 participants with knee OA and 17 participants without lower extremity symptoms or known pathology, is 5\(^{\circ}\), meaning any change more than 5\(^{\circ}\) is considered to be change beyond measurement error.\(^{31}\) The MDC for pain for hip flexion is a change of 1.2 on the 0-to-10 NPRS.\(^{31}\) The clinically important difference for the NPRS, derived from patients with low back pain, has been shown to be a reduction of 2 points.\(^{28,31}\)

Hip Abductor Muscle and Posterior Gluteus Medius Strength Test

- **ICF category:** measurement of impairment of body function: power of isolated muscles and muscle groups
- **Description:** a test to determine the strength of the hip abductor muscles
- **Measurement method:**
 - **Hip abductor strength:** hip abductor strength is measured with the patient in sidelying on the nontested side. The patient is positioned with the trunk in neutral alignment and the pelvis perpendicular to the testing surface. The nontested hip and knee are flexed. The patient’s tested limb is placed in hip abduction, neutral rotation, and neutral flexion/extension. The examiner then monitors for compensation as the patient holds the test position. If the patient can maintain the test position for 3 seconds without compensation, resistance may be applied. The examiner places 1 hand on the iliac crest to prevent the pelvis from rotating or tilting. Measurement: manual muscle test: the examiner uses the other hand to place resistance at the ankle in the direction of femoral adduction. A grade between 0 and 5 is given based on the patient’s ability to move or hold the limb against gravity or to resist additional manual force provided by the clinician. Handheld dynamometer: the examiner places the dynamometer at the lateral aspect of the distal thigh. A “make” test\(^{32}\) is performed by asking the participant to push maximally against the dynamometer, simulating their maximum isometric contraction. To eliminate the effect of tester strength,\(^{109}\) it is best to perform the “make” test using straps to hold the dynamometer in place and to provide the resistance to the motion. A “break” test\(^{34}\) is performed by the tester manually applying the resistance. The participant is asked to hold against the examiner’s resistance. Maximum strength is assumed when the tester’s force is able to overcome the participant’s force. Using the dynamometer, force may be expressed as pounds, kilograms, or Newtons. The test may also be performed in supine.
Nonarthritis Hip Joint Pain: Clinical Practice Guidelines

- Posterior gluteus medius strength: posterior gluteus medius strength is measured with the patient in sidelying on the nontested side. The patient is positioned with the trunk in neutral alignment and the pelvis rotated slightly forward. The nontested hip and knee are flexed. The patient’s tested limb is placed in hip abduction, slight external rotation, and slight extension. The examiner monitors for compensation as the patient holds the test position. If the patient can maintain the test position for 3 seconds without compensation, resistance may be applied. The examiner firmly places 1 hand on the iliac crest to prevent the pelvis from rotating or tilting. Measurement: manual muscle test: the examiner uses the other hand to place resistance at the ankle in the direction of femoral adduction and flexion. A grade between 0 and 5 is given based on the patient’s ability to move or hold the limb against gravity or to resist additional manual force provided by the clinician. Handheld dynamometer: the examiner places the dynamometer at the lateral aspect of the distal thigh. A “make” test is performed by asking the participant to push maximally against the dynamometer, simulating their maximum isometric contraction. To eliminate the effect of tester strength, it is best to perform the “make” test using straps to hold the dynamometer in place and to provide the resistance to the motion. A “break” test is performed by the tester manually applying the resistance. The participant is asked to hold against the examiner’s resistance. Maximum strength is assumed when the tester’s force is able to overcome the participant’s force. Using the dynamometer, force may be expressed as pounds, kilograms, or Newtons.

 • Nature of variable: manual muscle test: ordinal. Dynamometer: continuous
 • Units of measurement: manual muscle test: none. Dynamometer: force in pounds, kilograms, or Newtons
 • Measurement properties: there are no known studies reporting the measurement properties of hip abductor or posterior gluteus medius strength testing in people with nonarthritic hip disorders. Studies reporting tester reliability in healthy adults and people with hip OA provide evidence of good to excellent intrarater reliability for testing the hip abductors. Hip abductors in the sidelying position using handheld dynamometer: the intrarater reliability (ICC2,3) of force measures in healthy subjects was 0.90 (95% CI: 0.74, 0.97). The coefficient of variation was 3.67%. Hip abductors in the supine position using handheld dynamometer: the intrarater reliability (ICC2,3) of force measures in healthy subjects was 0.83 (95% CI: 0.57, 0.94) to 0.96. The coefficient of variation was 6.11%. The MDC50 determined from a sample of healthy subjects was 5.4% of body weight for males and 5.3% of body weight for females. In subjects with hip OA, the intrarater reliability (ICC2,3) for hip abductor muscle torque was 0.84 (95% CI: 0.55, 0.94; SEM, 12.1 Nm).

Hip Internal Rotator Muscle Strength Test With the Hip Flexed and the Hip Extended

 • ICF category: measurement of impairment of body function: power of isolated muscles and muscle groups
 • Description: a test to determine the strength of the hip internal rotator muscles
 • Measurement method: hip internal rotators, hip flexed: the internal rotators are measured with the patient in sitting, with the knees flexed to 90°. The patient is positioned with the trunk in neutral alignment and the hip in 90° of flexion and 0° of abduction/adduction. Hip extended: the internal rotators are measured with the patient in supine, with the knee flexed to 90° over the edge of the testing surface. The patient is positioned with the trunk in neutral alignment and the hip in 0° of flexion/extension and 0° of abduction/adduction. To assist in maintaining the trunk in neutral alignment, the opposite hip and knee are placed in flexion with the foot resting on the support surface. The patient’s tested limb is placed at end-range internal rotation. The examiner then monitors for compensation as the patient holds the test position. If the patient can maintain the test position for 3 seconds without compensation, resistance may be applied. The examiner places one hand on the medial distal thigh to prevent hip abduction/adduction. Measurement: manual muscle test: the examiner uses the other hand to place resistance at the ankle in the direction of external rotation. A grade between 0 and 5 is given based on the patient’s ability to move or hold the limb against gravity or to resist additional manual force provided by the clinician. Handheld dynamometer: the examiner places the dynamometer above the ankle on the lateral aspect. A “make” test is performed by asking the participant to push maximally against the dynamometer, simulating their maximum isometric contraction. To eliminate the effect of tester strength, it is best to perform the “make” test using straps to hold the dynamometer in place and to provide the resistance to the motion. A “break” test is performed by the tester manually applying the resistance. The participant is asked to hold against the examiner’s resistance. Maximum strength is assumed when the tester’s force is able to overcome the participant’s force. Using the dynamometer, force may be expressed as pounds, kilograms, or Newtons.
Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

Hip internal rotation with the hip flexed: in subjects with hip OA, the intratester reliability (ICC$_{a,w}$) for hip internal rotator muscle torque (force in Newtons × lever arm) was 0.98 (95% CI: 0.94, 0.99; SEM, 3.7 Nm).159

Hip External Rotator Muscle Strength Test With the Hip Flexed and the Hip Extended

- **ICF category:** measurement of impairment of body function: power of isolated muscles and muscle groups
- **Description:** a test to determine the strength of the hip external rotator muscles
- **Measurement method:** hip external rotators, hip flexed159: the external rotators are measured with the patient in sitting, with the knees flexed to 90°. The patient is positioned with the trunk in neutral alignment and the hip in 90° of flexion and 0° of abduction/adduction. Hip extended: the external rotators are measured with the patient in supine, with the knee flexed to 90° over the edge of the testing surface. The patient is positioned with the trunk in neutral alignment and the hip in 0° of flexion/extension and 0° of abduction/adduction. To assist in maintaining the trunk in neutral alignment, the opposite hip and knee are placed in flexion with the foot resting on the support surface. The patient's tested limb is placed at end-range external rotation. The examiner then monitors for compensation as the patient holds the test position. If the patient can maintain the test position for 3 seconds without compensation, resistance may be applied. The examiner places one hand on the lateral distal thigh to prevent hip abduction/adduction. Measurement: manual muscle test: the examiner uses the other hand to place resistance at the ankle in the direction of internal rotation. A grade between 0 and 5 is given based on the patient’s ability to move or hold the limb against gravity or to resist additional manual force provided by the clinician. Handheld dynamometer: the examiner places the dynamometer above the ankle on the lateral aspect. A “make” test159 is performed by asking the participant to push maximally against the dynamometer, simulating their maximum isometric contraction. To eliminate the effect of tester strength,160 it is best to perform the “make” test using straps to hold the dynamometer in place and to provide the resistance to the motion. A “break” test159 is performed by the tester manually applying the resistance. The participant is asked to hold against the examiner’s resistance. Maximum strength is assumed when the tester’s force is able to overcome the participant’s force. Using the dynamometer, force may be expressed as pounds, kilograms, or Newtons.
- **Nature of variable:** manual muscle test: ordinal. Dynamometer: continuous
- **Units of measurement:** manual muscle test: none. Dynamometer: force in pounds, kilograms, or Newtons
- **Measurement properties:** there are no known studies reporting the measurement properties of hip external rotator strength testing in people with nonarthritic hip disorders. Hip external rotation with the hip flexed: in subjects with hip OA, the intratester reliability (ICC$_{a,w}$) for hip external rotator muscle torque (force in Newtons × lever arm) was 0.98 (95% CI: 0.96, 0.99; SEM, 3.2 Nm).159

Single-Joint Hip Flexor Muscle Strength Test

- **ICF category:** measurement of impairment of body function: power of isolated muscles and muscle groups
- **Description:** a test to determine the strength of the hip flexor muscles
- **Measurement method:** the hip flexors are measured with the patient in sitting, with the knee flexed to 90° over the edge of the testing surface. The patient is positioned with the trunk in neutral alignment and the hip in 0° of external/internal rotation and 0° of abduction/adduction. The patient’s tested limb is placed at end-range flexion. The examiner then monitors for compensation as the patient holds the test position. If the patient can maintain the test position for 3 seconds without compensation, resistance may be applied. The examiner places one hand on the anterior shoulder to prevent trunk flexion. Measurement: manual muscle test: the examiner uses the other hand to place resistance at the anterior distal femur in the direction of hip extension. A grade between 0 and 5 is given based on the patient’s ability to move or hold the limb against gravity or to resist additional manual force provided by the clinician. Handheld dynamometer: the examiner places the dynamometer just proximal to the knee on the extensor surface of the thigh. A “make” test159 is performed by asking the participant to push maximally against the dynamometer, simulating their maximum isometric contraction. To eliminate the effect of tester strength,160 it is best to perform the “make” test using straps to hold the dynamometer in place and to provide the resistance to the motion. A “break” test159 is performed by the tester manually applying the resistance. The participant is asked to hold against the examiner’s resistance. Maximum strength is assumed when the tester’s force is able to overcome the participant’s force. Using the dynamometer, force may be expressed as pounds, kilograms, or Newtons.
- **Nature of variable:** manual muscle test: ordinal. Dynamometer: continuous
- **Units of measurement:** manual muscle test: none. Dynamometer: force in pounds, kilograms, or Newtons
- **Measurement properties:** there are no known studies reporting the measurement properties of hip flexor strength in people with nonarthritic hip disorders. Hip flexion with the handheld dynamometer: in subjects with hip OA, the intratester reliability (ICC$_{a,w}$) for hip flexor muscle torque (force in Newtons × lever arm) was 0.87 (95% CI: 0.69, 0.95; SEM, 10.9 Nm).159
These guidelines will address the major nonsurgical interventions of nonarthritic hip joint disorders. Because the available evidence examining nonsurgical management of individuals with nonarthritic hip pain is limited, all of the interventions discussed in these guidelines are based on expert opinion. Clinicians should consider a course of conservative management as the initial treatment approach for this population.

PATIENT EDUCATION AND COUNSELING
Griffin et al described the importance of preoperative physical therapy for patients preparing to undergo arthroscopic procedures of the hip joint. Patients may be provided education in regard to joint protection strategies and avoidance of symptom-provoking activities. Individuals with an acetabular labral tear should be educated in regard to activities that could place the labrum at risk for further injury. Advice on activity modifications is indicated for all individuals with nonarthritic hip disorders and should be individually tailored to meet the functional demands and the diagnostic subgroup unique to the individual. Education recommendations based on the presence of specific osseous abnormalities are listed below.

DIAGNOSIS – SPECIFIC INSTRUCTION

Femoroacetabular Impingement
The patient should avoid activities that consistently place the hip joint in positions that create the impingement effect. Activities that place the hip joint in end-range flexion, internal rotation, and in some cases abduction are of particular concern.

Structural Instability
Activities that place repetitive strain on the passive restraints of the hip should be limited. Such activities may include the motions of forced extension or rotational loading.

Activity Modification
Daily activities such as sitting, sit-to-stand, ambulation on level surfaces and stairs, and sleeping positions should be assessed to determine whether the patient is able to perform these activities without an increase in pain. The movement pattern and alignment of the hip demonstrated during the activities should be assessed to determine whether the movement pattern or alignment may be contributing to the pain problem. If the movement pattern or alignment appears to be contributing to the pain problem, then instruction should be provided to modify the patient’s performance. For example, a patient with a positive hip flexion, adduction, internal rotation (FADIR) test should be instructed to avoid assuming positions that place the hip in the impingement position, such as sitting in a low, soft chair. Sitting in a low, soft chair may place the hip in a flexed and internally rotated position and therefore contribute to impingement-related pain.

If pain is increased or the patient demonstrates a significant impaired movement pattern during ambulation, he or she may need to be instructed in the use of assistive devices, such as a walker, crutches, or a cane. Assistive devices, when used appropriately, will reduce the amount of force through the hip joint. When using a cane, the cane should be placed in the hand opposite the injured limb. Also, instructing patients in gait modification by emphasizing ankle and toe plantar flexion at the terminal stance and preswing phases of the gait cycle may be helpful.

In addition to basic daily activities, activities that increase the patient’s pain, such as work-related or fitness activities, should be assessed and modified as appropriate. The activity may be modified by changing the patient’s movement or alignment, such as their sitting position at work, or by reducing the intensity of the activity. For instance, if the patient has femoroacetabular impingement, the flexibility routine may need to be modified to limit the use of aggressive end-range flexion or internal rotation stretches.

Any modifications of the physical environment that can decrease the overall amount of repetitive shear forces experienced at the hip joint should be made if feasible. As an example, a patient with femoroacetabular impingement may be instructed to use a higher seat position during work or fitness activities such as cycling. The higher seat position will result in the hips being positioned higher than the knees, and thus excessive hip flexion will be avoided.

Evaluation from a modern pain sciences perspective and patient education from a therapeutic neuroscience approach should be considered. As in OA pain, the exact cause of nonarthritic hip pain is unclear, and there may be changes
Clinicians may utilize patient education and counseling for modifying aggravating factors and managing pain associated with nonarthritic hip joint pain.

Manual Therapy
A progressive trial of manual therapy, which may include soft tissue or joint mobilization/manipulation, may be beneficial in pain reduction and restoration of motion. Utilization of manual therapy in an attempt to improve the rate of nutrient imbibition for the articular cartilage has been suggested. Indications for mobilization/manipulation of the hip joint include hip pain and decreased passive range of motion with a capsular end feel. Indications for mobilization of the pelvis and hip soft tissue, such as myofascia that may be limiting normal hip mobility, include decreased passive range of motion with an elastic end feel and immediate positive gains in mobility following application of procedures to inhibit or relax the targeted myofascia.

Individuals with identified osseous abnormalities may be subject to specific concerns in regard to manual therapy.

Femoroacetabular Impingement
End-range physiologic techniques such as flexion and internal rotation should be avoided if the patient has cam or pincer impingement. Impingement may be suspected if a bony end feel is detected at the end of hip flexion and internal rotation.

Structural Instability
Joint mobilization, except for pain modulation, is contraindicated in individuals classified as hypermobile.

In the absence of contraindications, joint mobilization procedures may be indicated when capsular restrictions are suspected to impair hip mobility, and soft tissue mobilization procedures may be indicated when muscles and their related fascia are suspected to impair hip mobility.

Therapeutic Exercises and Activities

Stretching
The clinician must evaluate patients to determine hip range of motion and assess the range of motion end feel to verify the likely cause of the range-of-motion limitation. Patients who display a limited range of motion with a hard (bony) end feel may not benefit from stretching, particularly if stretching aggravates the patient's pain. Patients who display a limited range of motion and a capsular end feel may benefit from stretching.

Two patterns of asymmetrical hip rotation may be found in patients with nonarthritic hip pain, including those with excessive hip external rotation with limited hip internal rotation and those with excessive hip internal rotation with limited hip external rotation. These asymmetries may be related to bony abnormalities or soft tissue restrictions. Impingement (cam or pincer) or femoral retroversion may be correlated with reduced hip internal rotation. Excessive femoral anteversion may be correlated with reduced external rotation. The evidence related to contributors to range-of-motion asymmetries due to soft tissue restrictions is limited.

A common pattern in patients with femoroacetabular impingement is where hip internal rotation is decreased while external rotation is increased. Ejnisman et al noted that adult patients (mean age, 35 years) with signs of hip impingement often have more hip external than internal rotation. Wyss et al noted that patients who present with impingement have limited hip internal rotation. Some studies suggest that a loss of internal rotation in patients with impingement is associated with a bony restriction and is not from a shortening of soft (capsular or muscle) tissue. Yuan et al found that patients with a bony block often had significantly limited hip internal rotation, usually less than 10°. Besides limited hip internal rotation, another finding in patients with femoroacetabular impingement is reduced hip flexion and abduction.

Stretching is contraindicated in those with structural instability, where patients often display an increased range of internal and external hip rotation as well as hip adduction and abduction.

We encourage future studies that will examine the effect of stretching/mobilization on hip joint rotation range of motion in those with limited hip motion or asymmetrical hip rotation and in patients with signs and symptoms of femoroacetabular impingement.

Challenges
Strength impairments of the lower extremity and trunk identified through physical examination should be addressed. Cibulka et al showed that those who have excessive hip external rotation range of motion when compared to internal rotation range of motion have weakness in their hip in-
ternal rotator muscles, whereas those who display excessive hip internal rotation range of motion compared to external rotation range of motion have weakness in the hip external rotator muscles. We recommend that any asymmetrical muscle weakness found in these patients should be addressed with a hip-strengthening program for the specific weakened muscles.

Particular attention should be placed on the strength of the hip abductors and hip rotators in patients with structural instability. It has been suggested that loss of rotational stability may be linked to acetabular labral tears. Sufficient strength may be a particular concern in this population, reducing the ability to control the excessive range of motion that occurs at the hip joint.

Muscle Flexibility

Soft tissue restrictions of the lower extremity and trunk can be addressed through soft tissue mobilization, contract/relax stretching, and prolonged stretching that does not increase the patient’s symptoms. Decreased motion secondary to soft tissue length will have a “muscular” end feel as compared to a “hard” end feel due to bony approximation. The most common shortened muscles around the hip include the 2-joint muscles, iliopsoas, rectus femoris, hamstrings, and tensor fascia latae-iliotibial band. Osseous conditions associated with range-of-motion limitations, such as femoroacetabular impingement, femoral retroversion, or excessive femoral anteversion, should not be treated with excessive flexibility exercises, as this may exacerbate symptoms.

Cardiorespiratory Endurance

Individuals with nonarthritic hip joint pain may be deconditioned secondary to decreased activity levels due to pain. Cardiorespiratory/aerobic conditioning is necessary to promote optimal health and prevent or remediate metabolic disorders such as obesity and diabetes. Activities that minimize shearing/frictional forces experienced at the hip joint are optimal. In addition, activities that increase pain should be modified. Activities that enable aerobic conditioning with limited stress to the hip include stationary cycling, swimming, and use of elliptical exercise equipment.

Clinicians may utilize therapeutic exercises and activities to address joint mobility, muscle flexibility, muscle strength, muscle power deficits, deconditioning, and metabolic disorders identified during the physical examination of patients with nonarthritic hip joint pain.

Neuromuscular Re-education

Neuromuscular re-education, including proprioceptive/perturbation training, has been previously defined as “movement training progressions that facilitate the development of multijoint neuromuscular engrams that combine joint stabilization, acceleration, deceleration, and kinesthesia through intermittent protocols that progress from low intensity movements focused in a single plane to multiplanar power training.” Neuromuscular re-education has had some success for other lower extremity disorders and may provide an effective intervention in nonarthritic hip pain. Kim and Azuma suggested that nerve endings located within the acetabular labrum potentially have an effect on proprioception. Individuals with a compromised labrum may benefit from training to increase the efficiency of the musculature to provide dynamic stabilization.

Clinicians may utilize neuromuscular re-education procedures to diminish movement coordination impairments identified in patients with nonarthritic hip joint pain.
Summary of Recommendations

Risk Factors
Clinicians should consider the presence of osseous abnormalities, local or global ligamentous laxity, connective tissue disorders, and nature of the patient’s activity and participation as risk factors for hip joint pathology.

Diagnosis/Classification – Nonarthritic Hip Joint Pain
Clinicians should use the clinical findings of anterior groin or lateral hip pain or generalized hip joint pain that is reproduced with the hip flexion, adduction, internal rotation (FADIR) test or the hip flexion, abduction, external rotation (FABER) test, along with consistent imaging findings, to classify a patient with hip pain into the International Statistical Classification of Diseases and Related Health Problems (ICD) categories of M25.5 Pain in joint, M24.7 Protrusio acetabula, M24.0 Loose body in joint, and M24.2 Disorder of ligament, and the associated International Classification of Functioning, Disability and Health (ICF) impairment-based categories of hip pain (b28016 Pain in joints) and mobility impairments (b7100 Mobility of a single joint; b7150 Stability of a single joint).

Differential Diagnosis
Clinicians should consider diagnostic categories other than nonarthritic joint pain when the patient’s history, reported activity limitations, or impairments of body function and structure are not consistent with those presented in the Diagnosis/Classification section of this guideline or when the patient’s symptoms are not diminishing with interventions aimed at normalization of the impairments of body function.

Examination – Outcome Measures
Clinicians should use a validated outcome measure, such as the Hip Outcome Score (HOS), the Copenhagen Hip and Groin Outcome Score (HAGOS), or the International Hip Outcome Tool (iHOT-33), before and after interventions intended to alleviate the impairments of body function and structure, activity limitations, and participation restrictions in individuals with nonarthritic hip joint pain.

Examination – Physical Impairment Measures
When evaluating patients with suspected or confirmed hip pathology over an episode of care, clinicians should assess impairments of body function, including objective and reproducible measures of hip pain, mobility, muscle power, and movement coordination.

Intervention – Patient Education and Counseling
Clinicians may utilize patient education and counseling for modifying aggravating factors and managing pain associated with nonarthritic hip joint pain.

Intervention – Manual Therapy
In the absence of contraindications, joint mobilization procedures may be indicated when capsular restrictions are suspected to impair hip mobility, and soft tissue mobilization procedures may be indicated when muscles and their related fascia are suspected to impair hip mobility.

Intervention – Therapeutic Exercises and Activities
Clinicians may utilize therapeutic exercises and activities to address joint mobility, muscle flexibility, muscle strength, muscle power deficits, deconditioning, and metabolic disorders identified during the physical examination of patients with nonarthritic hip joint pain.

Intervention – Neuromuscular Re-Education
Clinicians may utilize neuromuscular re-education procedures to diminish movement coordination impairments identified in patients with nonarthritic hip joint pain.
AFFILIATIONS AND CONTACTS

AUTHORS
- Keelan Enseki, PT, MS
 - Orthopaedic Physical Therapy Residency Program Director
 - Centers for Rehab Services/University of Pittsburgh Medical Center
- UPMC Center for Sports Medicine
- Pittsburgh, Pennsylvania
- ensekikr@upmc.edu

- Marcie Harris-Hayes, DPT, MSCI
 - Associate Professor of Physical Therapy and Orthopaedic Surgery
 - Washington University School of Medicine
 - St Louis, Missouri
 - harrisma@wustl.edu

- Douglas M. White, DPT
 - Principal and Consultant
 - Milton Orthopaedic & Sports Physical Therapy, PC
 - Milton, Massachusetts
 - dwhite@miltonortho.com

- Michael T. Cibulka, DPT
 - Associate Professor
 - Physical Therapy Program
 - Maryville University
 - St Louis, Missouri
 - cibulka@maryville.edu

- Judith Woehrle, PT, PhD
 - Director
 - Physical Therapy Program
 - Midwestern University
 - Glendale, Arizona
 - jwoehr@midwestern.edu

- Timothy L. Fagerson, DPT, MS
 - Director
 - Spine Orthopaedic Sport Physical Therapy
 - Wellesley, Massachusetts
 - fagerson@verizon.net

- John C. Clohisy, MD
 - Professor, Orthopedic Surgery
 - Director, Center for Adolescent and Young Hip Disorders
 - Washington UniversityOrthopedics
 - St Louis, Missouri
 - john.dewitt@osumc.edu

- Helene Fearon, PT
 - Fearon & Levine Consulting
 - Phoenix, Arizona
 - helenefearon@fearonlevine.com

- Amanda Ferland, DPT
 - Provo, Utah
 - timl@colpts.com

- Jennifer Kusnell
 - Young & Successful Media
 - Vail, Colorado
 - jenniferk@ysn.com

- Joy MacDermid, PT, PhD
 - Associate Professor
 - School of Rehabilitation Science
 - McMaster University
 - Hamilton, Ontario, Canada
 - macderj@mcmaster.ca

- Philip McClure, PT, PhD
 - Department of Physical Therapy
 - Arcadia University
 - Glenside, Pennsylvania
 - mcclure@arcadia.edu

- John Meyer, DPT
 - Adjunct Associate Professor
 - University of Southern California
 - Los Angeles, California
 - jmeyer@usc.edu

- Marc Philippon, MD
 - Managing Partner, Sports Medicine/Hip Disorders
 - The Steadman Clinic
 - Vail, Colorado
 - torburn@yahoo.com

REVIEWERS
- Roy D. Altman, MD
 - Professor of Medicine
 - Division of Rheumatology and Immunology
 - David Geffen School of Medicine at UCLA
 - Los Angeles, California
 - journals@royaltman.com

- Todd E. Davenport, DPT
 - Associate Professor
 - Department of Physical Therapy
 - University of the Pacific
 - Stockton, California
 - tdavenport@pacific.edu

- Anthony Delitto, PT, PhD
 - Professor and Chair
 - School of Health & Rehabilitation Sciences
 - University of Pittsburgh
 - Pittsburgh, Pennsylvania
 - delitto@pitt.edu

- John DeWitt, DPT
 - Team Leader, Rehabilitation
 - Assistant Clinical Professor, School of Physical Therapy
 - Sports Physical Therapy Residency
 - The Ohio State University Sports Medicine Center
 - john.dewitt@osumc.edu

- Amanda Ferland, DPT
 - Provo, Utah
 - timl@colpts.com

- Jennifer Kusnell
 - Young & Successful Media
 - Vanguard, California
 - jenniferk@ysn.com

- Joy MacDermid, PT, PhD
 - Associate Professor
 - School of Rehabilitation Science
 - McMaster University
 - Hamilton, Ontario, Canada
 - macderj@mcmaster.ca

- Philip McClure, PT, PhD
 - Department of Physical Therapy
 - Arcadia University
 - Glenside, Pennsylvania
 - mcclure@arcadia.edu

- John Meyer, DPT
 - Adjunct Associate Professor
 - University of Southern California
 - Los Angeles, California
 - jmeyer@usc.edu

- Marc Philippon, MD
 - Managing Partner, Sports Medicine/Hip Disorders
 - The Steadman Clinic
 - Vail, Colorado
 - torburn@yahoo.com

COORDINATOR
- Joseph Godske, DPT, MA
 - ICF-Based Clinical Practice Guidelines Coordinator
 - Orthopaedic Section, APTA, Inc
 - La Crosse, Wisconsin
 - icf@orthopt.org

- James W. Matheson, DPT
 - Larsen Sports Medicine
 - Hudson, Wisconsin
 - jw@eipconsulting.com

- Lesli Torburn, DPT
 - Principal and Consultant
 - Silhouette Consulting, Inc
 - San Carlos, California
 - torburn@yahoo.com
REFERENCES

36. Clohisy JC, Nunley RM, Otto RJ, Schoenecker PL. The frog-leg lateral...
72. Harris-Hayes M, Sahrmann SA, Norton BJ, Salsich GB. Diagnosis and management of a patient with knee pain using the movement...
79. Ito K, Minka MA, 2nd, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative ana-
83. Johnston TL, Schenker ML, Briggs KK, Philippin MJ. Relationship between offset angle alpha and hip chondral injury in femoro-
84. Jung KA, Restrepo C, Hellman M, Abdel-Salam H, Morrison W, Parvizi J. The prevalence of cam-type femoroacetabular deformity in asympto-
86. Kasserian A, Brisson M, Palmer WE. Femoroacetabular impinge-
88. Kelly BT, Williams RJ, 3rd, Philippin MJ. Hip arthroscopy: current indica-
92. Kiviainen BR, Clemente FR, Martin RL, Martin HD. Function of the liga-
102. Lequesne M, de Seze S. [False profile of the pelvis. A new radiographic incidence for the study of the hip. Its use in dysplasias and different
103. Leunig M, Beaulé PE, Ganz R. The concept of femoroacetabular
Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

143. Nogier A, Bonin N, May O, et al. Descriptive epidemiology of mechani-
cal hip pathology in adults under 50 years of age. Prospective series of
292 cases: clinical and radiological aspects and physiopathological
org/10.1016/j.jtss.2010.09.005

144. Naguchi Y, Miura H, Takasugi S, Iwamoto Y, Cartilage and labrum
degeneration in the dysplastic hip generally originates in the anterosu-

145. Nötzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber, K, Hodler J. The
contour of the femoral head-neck junction as a predictor for the risk of

146. Ochoa LM, Dawson L, Patzkowski JC, Hsu JR. Radiographic prevalence
of femoroacetabular impingement in a young population with hip
dx.doi.org/10.1007/s00061-010-1233-8

147. Palastanga N, Field D, Soames R. Anatomy and Human Movement:
Structure and Function. 5th ed. Edinburgh, UK: Butterworth-Heine-
mann; 2006.

149. Peelle MW, Della Rocca GJ, Maloney WJ, Curry MC, Clohisy JC. Ac-
etabular and femoral radiographic abnormalities associated with labral

150. Philippon M, Schenker M, Briggs K, Kuppersmith D. Femoroacetabular
impingement in 45 professional athletes: associated pathologies and
return to sport following arthroscopic decompression. Knee Surg
org/10.1007/s00167-007-0332-x

151. Philipson MJ. The role of arthroscopic thermal capsulorrhaphy in the

152. Philipson MJ, Kuppersmith DA, Wolff AB, Briggs KK. Arthroscopic
findings following traumatic hip dislocation in 14 professional ath-
arthro.2008.09.013

presentation of femoroacetabular impingement. Knee Surg Sports
s00467-007-0348-2

Magnetic resonance arthrography of the acetabular labrum. Macro-

in the aetiology of femoroacetabular impingement: a sibling
or/10.1302/0301-620X.92B2.22850

ment and classification of the cam deformity: the reference inter-
or/10.3109/17456367.2010.5361901

158. Potter BK, Freedman BA, Andersen RC, Bojescul JA, Kuklo TR, Murphy KP.
Correlation of Short Form-36 and disability status with outcomes

159. Pua YH, Wrigley TV, Cowan SM, Bennett KL. Intrarater test-retest
reliability of hip range of motion and hip muscle strength measure-

160. Rab GT. The geometry of slipped capital femoral epiphysis: implica-
tions for movement, impingement, and corrective osteotomy. J Pediatr

161. Rakha KS, Sheikh AM, Allen D, Beaulé PE. Comparison of MRI alpha
angle measurement planes in femoroacetabular impingement. Clin
s1999-008-0627-3

162. Rao J, Zhou YX, Villar RN. Injury to the ligamentum teres. Mechanism,

165. Risberg MA, Holm I, Myklebust G, Engedretsen L. Neuromuscular train-
ing versus strength training during first 6 months after anterior cruci-
ate ligament reconstruction: a randomized clinical trial. Phys Ther.

166. Robertson JW, Kadrmrs WR, Kelly ST. Arthroscopic management
of labral tears in the hip: a systematic review of the literature. Clin
BLO.0b013e31802c7e0f

167. Rothenfluh DA, Reedwisch D, Müller U, Ganz R, Tenent A, Leunig M.
Construct validity of a 12-item WOMAC for assessment of femoro-ace-
tabular impingement and osteoarthritis of the hip. Osteoarthritis Carti-

168. Safran MR, Giordano G, Lindsey DP, et al. Strains across the acetabu-

169. Sampson TG. Arthroscopic treatment for chondral lesions of the
csm.2010.12.012

170. Schenker ML, Martin RL, Weiland DE, Philippon MJ. Current trends in
hip arthroscopy: a review of injury diagnosis, techniques and outcome

171. Schmer M, Pollard H, Hoskins W. Labral injuries of the hip: a review of
http://dx.doi.org/10.1016/j.jmpt.2005.08.018

my, histologic features, and vascularity of the adult acetabular labrum.

173. Shindell MK, Ranawat AS, Kelly BT. Diagnosis and management of tra-
matic and atraumatic hip instability in the athletic patient. Clin Sports

174. Shu B, Safran MR. Hip instability: anatomic and clinical considera-

position and gender on active hip internal and external rotation. J
jspf.1998.28.3.158

176. Singleton MC, Leveau BF. The hip joint: structure, stability, and stress;

177. Sink EL, Gralla J, Ryba A, Dayton M. Clinical presentation of femoro-
acetabular impingement in adolescents. J Pediatr Orthop. 2008;28:806-

Nonarthritic Hip Joint Pain: Clinical Practice Guidelines

