An Evidence-based Update on Management of Patients With Rotator Cuff Tears: Nonoperative and Postoperative Rehabilitation

Brian G. Leggin, PT, DPT, OCS
Andrew F. Kuntz, MD
Martin J. Kelley, PT, DPT, OCS

OBJECTIVES OF THIS SESSION
- Nonoperative Management of Rotator Cuff Tears
- Surgical Decision Making and Management
- Postoperative Rehabilitation

OBJECTIVES
- Functional Anatomy and Biomechanics
- Pathophysiology of Rotator Cuff Disease
- Examination
- Nonoperative management

Shoulder Articulations
Subacromial Interface
- Elements
 - Coracoacromial Arch
 - Rotator Cuff
- Interface
 - Bursa

• 5 histologic layers
 1. large arterioles
 2. large bundles of tendon fibers
 3. smaller collagen bundles
 4. loose CT
 5. shoulder capsule

Clark, JBJS 1992

LET ME KNOW WHERE YOU ARE AND WE CAN SHOW IT DOWN YOUR THROAT!
Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears

ROTATOR CUFF INSERTION
Curris, Arthroscopy, 2006

ROTATOR CUFF INSERTION
Mochizuki, JBJS, 2008

Shoulder Girdle Musculature
Rotator Cuff

Rotator Cuff Disease
Natural History

- One of the most prevalent musculoskeletal disorders
- Clinical presentation varies widely
- Some patients present with minimal impairments and functional limitations
- Others present with profound impairments and loss of function

Shoulder Girdle Musculature
Rotator Cuff

- Force Couples
 - Subscapularis
 - Posterior Cuff
 - Infraspinatus
 - Teres Minor
 - Humeral Head Centralizer

Shoulder Girdle Musculature
Rotator Cuff

- Generally Accepted
- New Findings

Shoulder Girdle Musculature
Rotator Cuff
Rotator Cuff Disease

Natural History

- Rotator Cuff Tears in Asymptomatic Patients
 - Overall
 - Complete = 14%
 - Partial = 20%
 - Results by Age
 - >60 = 28% FT – 26% PT
 - 40-60 = 4% FT – 24% PT
 - <40 = 0% FT – 4% PT

- Yamaguchi, JBJS, 2006
- Presence of rotator cuff disease highly correlated to age
 - Average age:
 - No rotator cuff tear = 48.7 years
 - Unilateral rotator cuff tear = 58.7 years
 - Bilateral rotator cuff tear = 67.8 years
 - 50% likelihood of bilateral tear after 66 years

- Asymptomatic tears become symptomatic = 50%
 - Increase in pain common

- Tear Progression
 - 50% symptomatic patients
 - 22% asymptomatic patients

- Yamaguchi, JBJS, 2006
- Presence of rotator cuff disease highly correlated to age
 - Average age:
 - No rotator cuff tear = 48.7 years
 - Unilateral rotator cuff tear = 58.7 years
 - Bilateral rotator cuff tear = 67.8 years
 - 50% likelihood of bilateral tear after 66 years

- Intrinsic Factors
 - Changes in Cuff Vascularity
 - Metabolic Changes

- Extrinsic Factors
 - “impingement”
 - Primary
 - Secondary
 - Internal
 - Tensile Overload
 - GH Instability
 - Trauma

- Primay Extrinsic Impingement
- Acromial Morphology
 - Type I: flat = 17%
 - Type II: curved = 43%
 - Type III: hooked = 40%

- Specimens with RTC Tears
 - 73% had Type III Acromion

- Coracoacromial Arch
 - Acromion
 - Acromial Morphology
 - Anteroinferior osteophytes
 - CA Ligament
 - Thickens with age
 - Coracoid
 - AC Joint
 - Inferior Osteophyte
Radiology
AP View and Scapular ‘Y’ View

Role of Acromial Spur

- Ogawa, JSES, 2005
- Cadaveric study of 1029 shoulders
- Small spurs were associated with advancing age
- Morphologic change to the rotator cuff may enhance spur growth
- IE: “chicken or egg?”

Rotator Cuff Disease
Secondary External Impingement

- Rotator cuff dysfunction from secondary source causes impingement
 - Physiologic subacromial space narrowing
 - Scapulothoracic dysfunction
 - Instability
 - Neurologic
- Typically <35 years old
- @ Impingement signs
- Ø Plain radiographs

Rotator Cuff Disease
Internal Impingement

- Rare!
- Repetitive microtrauma
- Overhead athletes
- Late cocking phase
- Posterior rotator cuff impinges against the posterior-superior glenoid

Rotator Cuff Disease
Intrinsic Factors (vascular)

- Vascularity of distal supraspinatus tendon
 - Relative hypovascular zone prone to failure
 - “Critical zone”
 - Articular surface (undersurface)
 - 1 cm proximal to rotator cuff insertion
 - Hypovascularity mediated by arm position
 - Never proven!
 - Hypovascularity as direct cause

Location of Rotator Cuff Tear
Kim, et al, JBJS, 2010

- Ultrasound on 360 shoulders with rotator cuff tears
- Mean distance from biceps tendon to anterior tear margin = 7.8 mm
- Most commonly torn location = 15-16 mm posterior to biceps tendon
Rotator Cuff Tear Stage
Oh, et al, JBJS, 2011

- Set up testing system in cadavers
- Supraspinatus tear ↑d ER ROM and ↓d abd capability
- Adding half of infraspinatus changed humeral kinematics
- Pec major and lats kicked in as tear progressed

LONGITUDINAL SHAPED

- Lo & Burkart, AJSM, 2003

CRESCENT SHAPED

Lo & Burkhart, AJSM, 2003

L-SHAPED

- Lo & Burkart, AJSM, 2003

U-SHAPED

- Lo & Burkart, AJSM, 2003

Radiology
Humeral Head Migration
Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears

Radiology

MRI

Classification

- Rotator Cuff Disease
 - (aka: impingment, tendonitis, bursitis, tendonopathy)
 - Rotator Cuff – No Tear
- Rotator Cuff Tear (greatest diameter)
 - \(\leq 1 \text{ cm} \) = small tear
 - 1-3 cm = medium tear
 - 3-5 cm = large tear
 - > 5 cm = massive tear

Massive Rotator Cuff Tear

- Tear > 5 cm in diameter
 - Cofield 1985
- Detachment of at least two entire tendons from tuberosities
 - Patte, 1983 – Gerber, 2000

Rotator Cuff Disease History

- Rotator Cuff Signs and Symptoms
 - > 40 years of age – not always symptoms
 - Pain – lateral shoulder to insertion of deltoid
 - Pain with reaching overhead and/or behind back
 - Pain at night
 - Weakness or decreased ER Strength
 - Decreased IR ROM
- Pre-existing RTC symptoms followed by acute trauma indicative of acute extension of degenerative RTC
Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears

Clinical presentation of large and massive rotator cuff tears
- Pain (especially at night)
- Trauma/Chronic
- Atrophy
- PROM > AROM
- Impingement sign
- Weakness of FF & ER
- ER lag sign

Clincial Signs

Physical presentation of large and massive rotator cuff tears
- Pain (especially at night)
- Trauma/Chronic
- Atrophy
- PROM > AROM
- Impingement sign
- Weakness of FF & ER
- ER lag sign

Physical Examination

• Neer
• Hawkins
• Supraspinatus
 - Empty can

Physical Examination

• Lag signs
• External Rotation
 – 20° abd.
 – 90° abd. – isolates infraspinatus
• Subscapularis
 – Lift off
 – Belly press

Lift Off Test

Belly Press Test

• Isolates subscapularis
• Useful in patients who lack IR ROM
• Place hand on belly and hold elbow away from body
• Positive if patient cannot maintain elbow or hand position

Shoulder Exam

Lift Off Test

Belly Press Test

Brian G. Leggin, PT, DPT, OCS
RANGE OF MOTION

- **American Shoulder and Elbow Surgeons**
 - Forward Elevation
 - External Rotation at 0°
 - Internal Rotation up back
 - "IR at 90°"

 JSES 1994

- **Strength / Muscle Force**
 - **Internal and External Rotation** with arm at side, elbow flexed to 90°
 - **Forward elevation in plane of the scapula at 45°, elbow flexed to 90°**

 Leggin, et al JSES 1996

- **Rotator Cuff-No Tear/Partial/Small Tear significantly different than Medium and Large-Massive Tears**

TOTAL SCORE

- **Rehab Principles**
 - Rotator Cuff-No Tear and Tears ≤ 3 cm
 - pain relief with modalities
 - rest from painful activity
 - patient education
 - restore normal length of capsuloligamentous complex
 - Improve rotator cuff, deltoid, scapular muscle strength and coordination

APTA CSM 2013
San Diego, CA

Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears
Clinical Implication

• Pain relief and rest play a large role in managing rotator cuff disease

WHAT DO WE NOT DO??

SWISS BALL ROLL

MODALITIES

• Heat
• Ice
• NSAID’s
• Cortisone injection

RESTORE TISSUE LENGTH

Posterior Capsule

• Emphasize low load, repeated stretch
• 10 repetitions
• 10-20 second hold
• 3-4 times daily

PHASE II ROM

• Extension
• Internal rotation
• Cross body adduction
STRETCHING

STRENGTHENING

- Thera-band resistance
 - Yellow......2 lbs.
 - Red..........3 lbs.
 - Green.......4 lbs.
 - Blue.......5 lbs.
 - Black......6 lbs.
 - Silver.....8 lbs.

PHASE I STRENGTHENING

- External Rotation
- Internal Rotation
- Extension

PHASE I SCAPULAR MUSCLE STRENGTHENING

- Extension
MANUAL RESISTANCE

PHASE II STRENGTHENING

- *begin when at green for all Phase I exercises*
- Forward elevation below shoulder level
- Abduction to 45°
- External rotation at 45° supported

PHASE II STRENGTHENING

- Abduction to 45°

PHASE II STRENGTHENING

- External rotation at 45° supported

MANUAL RESISTANCE

ELEVATION and ER THROUGH RANGE

MANUAL RESISTANCE

ALTERNATING ISOMETRIC D2 and D1
Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears

- Determine the effect of a 6-week exercise program on:
 - Impairments
 - ROM, strength, 3D scapular kinematics
 - Function/Disability
 - Penn Shoulder Score, SF-36
 - Patients with shoulder impingement syndrome

McClure, et al
- N = 39
- Followed 1 time per week for 6 visits
- Improved:
 - Symptoms (pain, satisfaction)
 - Impairment (strength, ROM)
 - Function (shoulder score, SF-36)
 - PSS increased from 63 to 86
 - Scapular Kinematics (scap post tilt & ER)

Lombardi, *Arthritis & Rheumatism*, 2008
- Randomized controlled trial
- Progressive resistance vs. no exercise
- Resistance group demonstrated improved pain and function vs. control group

Cummins, *JSES*, 2009
- 100 patients received injection and therapy
- ASES score improved from 56 to 95
- Pain decreased from 4.8 to 0.6
- 79% did not undergo surgery
- 30% of those who did not have surgery continued to have some pain

Holmgren, BMJ, 2012
- 102 patients
- Randomized to specific exercise vs. control – non-specific
- Specific exercise
 - > improvement in Constant Score
 - < patient chose surgery (20% vs. 63%)

Horizontal Abduction with ER & Scap retraction
Rotator Cuff Tears Rehabilitation Principles

- Rehabilitation of medium (> 3cm) and large-massive cuff tears
 - Restore PROM
 - Initiate Cuff Strengthening (manual resistance)
 - Need to train remaining muscles to centralize humeral head to allow elevation
 - Emphasize subscapularis and deltoid

Outcome of Rotator Cuff ≤ 3 cm

- 11.5 visits
- PENN SHOULDER SCORE
 - IE = 58.04
 - DC = 82.92

Restore PROM

- Many patients have limited FE and IR
- Phase I ROM
 - Supine FE & ER with stick
- Phase II ROM
 - Extension with stick
 - Cross body adduction
 - Internal rotation
PHASE II ROM
- Extension
- Internal rotation
- Cross body adduction

Rotator Cuff Strength
- Provide manual resistance to ER/IR

Rotator Cuff Strength
- Phase I
 - ER
 - IR
 - Extension

Large – Massive Rotator Cuff Tears
- Proximal humeral migration correlates with cuff tear size
 - Keener, JBJS, 2009
- Stable glenohumeral abduction without excessive humeral migration requires significantly greater forces of subscapularis
 - Hansen, JBJS, 2008

Hawkes, JOR, 2012
- Compared healthy vs. massive rotator cuff patients
- Increased activity of latissimus dorsi and teres major

Graichen, J of Biomechanics, 2005
- Adducting muscle activity led to significant increase of subacromial space
- No difference in scapulo-humeral rhythm between abducting and adducting muscle activity
Large-Massive Rotator Cuff Tears

- Kelly, JSES, 2005
- 18 subjects:
 - 6 normals
 - 6 symptomatic 2 tendon cuff tears
 - 6 asymptomatic cuff tears
- EMG activity of 12 muscles during 10 functional tasks

Kelly, JSES, 2005

- All cuff tear patients had increased muscle activation during all tasks vs. normals
- Asymptomatic patients > subscapularis and deltoid activity
- Symptomatic patients = increased activity of torn rotator cuff and upper trapezius

Rotator Cuff Tears Rehabilitation Principles

Restore the balance point
Rotator Cuff Tears Rehabilitation Principles

- Supine active forward elevation
- Gradually introduce gravity
- Add weighted ball and/or elastic resistance
- Emphasize internal rotation strength

SUPINE ELEVATION PROGRESSION
SUPINE ELEVATION

ELEVATION PROGRESSION

Row

Levy, JSES, 2008
- 17 patients with irreparable massive tears
- Constant score increased from 26 to 60
- FE ROM increased from 40 to 160

Ainsworth, Musc Care, 2006
- 10 patients with massive cuff tears
- All demonstrated improvement in Oxford Shoulder Disability Questionnaire

OUTCOME
- 12.83 visits
- PENN SHOULDER SCORE
 - IE = 41.42
 - DC = 77.75
Evidenced Based Rehabilitation of Patients with Rotator Cuff Tears

Brian G. Leggin, PT, DPT, OCS

APTA CSM 2013
San Diego, CA

When did Subjects Improve?

- * = p value < 0.05

FUTURE

- Long term study of impact of exercise and therapy on rotator cuff disease
- Compare results to operative treatment

Thank You!!
Current Concepts in Rotator Cuff Repair

American Physical Therapy Association
2013 Combined Sections Meeting
San Diego, CA

Andrew F. Kuntz, MD
Assistant Professor
Department of Orthopaedic Surgery
University of Pennsylvania
Philadelphia, PA

Objective

- Review the pathogenesis and natural history of cuff disease
- Identify a “tear at risk”
- Review latest surgical techniques used in rotator cuff repair
- Review potential targets and new technology to augment a cuff repair

Disclosures

I have no potential conflicts with this presentation

Prevalence of Rotator Cuff Tears

- Cadaver studies:
 Full Thickness Tear
 5% - 40%
- Age related
 - 6%, age < 60
 - 30%, age > 60
- Partial thickness tears more common

Prevalence of Rotator Cuff Tears

- Sher et al., JBJS, 1995
- MRI, asymptomatic
- Overall: 35%
 - 15% full thickness
 - 20% partial thickness
- Age dependent
 - >60: 28% full, 26% part
 - 40-60: 4% full, 24% part
 - <40: 0% full, 4% part
Prevalence of Rotator Cuff Tears

Yamaguchi et al., JSES, 2001

- Unilateral shoulder pain
- Bilateral ultrasound
- Age relationship for tears
 - No tear – 48.7 y/o
 - Unilateral tear – 58.7 y/o
 - Bilateral tear – 67.8 y/o
 - 50% likelihood of bilateral tear after age 66 if present with painful tear

Risk Factors for Rotator Cuff Tear

- Genetics
 - ↑ incidence of tears in 2nd and 3rd degree relatives (Tashjian et al., JBJS, 2009)
- Hypercholesterolemia
 - ↑ serum lipids in patients with rotator cuff tears (Abboud & Kim, CORR, 2010)
 - ↓ tendon biomechanical properties (Beason et al., JOR, 2011)
- Smoking
 - ↑ prevalence of tear (Beason et al., CORR, 2011)
 - ↑ tear size (Carbone et al., JSES, 2012)

The Dilemma

Variation in Orthopaedic Surgeons’ Perceptions About the Indications for Rotator Cuff Surgery

- Treatment is not standardized
- Orthopaedic surgeons lack agreement on physical therapy, steroid injections, surgical decision
- No clear guidelines to dictate if, when, and how a rotator cuff tear should be fixed

Natural History of Rotator Cuff Tears

- Understanding of the natural history may help guide treatment
- How do you study the natural history?
 - Symptomatic → natural history often interrupted by treatment
 - Asymptomatic → model for investigating etiology of:
 - Pain
 - Tear prevalence
 - Tear progression

Natural History of Rotator Cuff Tears

- 45 patients w/ asymptomatic full thickness tears
- 5 years follow-up: ultrasound, questionnaire, exam
- Asymptomatic → symptomatic: 51% at 2.8 years
- ↑ pain, ↓ function in symptomatic group
- Tear Progression:
 - Asymptomatic: 22%
 - Symptomatic: 50%
 - None had tear healing

- Asymptomatic, full thickness tears
- 50% patients became symptomatic
 - Initial tear size (AP dimension) larger
 - Tear progression more common
- Conclusions:
 - Larger tears more likely to become symptomatic
 - Development of pain correlates with tear enlargement
 - Symptom development should prompt evaluation
Natural History of Rotator Cuff Tears

• Maman et al., JBJS-A, 2009
 – 33 pts., symptomatic full thickness tear
 – 52% tear progression
 – More likely after 18 months
 – Age > 60 and initial fatty infiltration correlated with progression

• Safran et al., AJSM, 2011
 – 51 pts, <60 y/o, symptomatic full thickness tear
 – 49% tear progression
 – Pain only factor that correlated with progression

• Conclusion: Significant rate (~50%) of tear progression

Tear Size – Does it Matter

Harryman et al., JBJS-A, 1991
• Ultrasound follow-up of open rotator cuff repair
• 105 shoulders, avg 5 year f/u
• Rate of recurrent tear
 – Supraspinatus only tear: 20% recurrence
 – Two tendon tear: 45% recurrence
 – Three tendon tear: 65% recurrence
• Most patients satisfied (even with recurrent defect)
• Function and satisfaction correlated with repair integrity

Timing – Early vs. Late Repair

• Rapid increase in repair tension with time
 (Gimbel et al., CORR, 2004)
• Improved function with early (<3 wks) repair
 (Bassett et al., CORR, 1983)
• No difference in outcomes if repaired w/in 3 months
 (Bjornsson et al., Acta Orthop, 2011)

Tear Progression and Repair Outcome

• Irreversible Changes
 – Retraction with adhesion
 – Muscle atrophy and fatty infiltration
 – Degenerative changes of the glenohumeral joint
• All are poor prognostic factors

Operative vs. Non-Operative Treatment

Risks Benefits

Surgery and Non-Op Outcomes vs.
Tear Progression / Irreversible Change
Operative vs. Non-Operative Treatment

- Group I (low risk w/ conservative approach)
 - Non-operative treatment
- Group II (high risk w/ conservative approach)
 - “Tear at risk”
 - Maximize healing potential
 - Consider early surgical intervention
 - Best repair possible (double vs. single row)
 - Address risk factors (smoking, hypercholesterolemia, NSAIDs)
 - Slow post-op rehab protocol
- Group III (irreversible changes)
 - Non-operative treatment
 - Perform least invasive surgery when necessary

Operative vs. Non-Operative Treatment

- [Box 1](Tashjian, Clin Sports Med, 2012)
 - Treatment algorithm for rotator cuff tear
 - Group I: Initial conservative treatment
 - Tendinitis
 - Partial thickness tears (except maybe larger bursal sided tears)
 - Single small (≤1 cm) labral/bursa tears
 - Group II: Early surgical repair
 - All acute tears bursal sided (except maybe small ≥1 cm tears)
 - All chronic full thickness tears in a young (risk) age group (except maybe small ≥1 cm tears)
 - Group III: Non-operative treatment
 - Ill chronic full thickness tears in adults (off the job) age group
 - Irreparable tears (based on tear size, retraction, muscle quality, and migration)

Operative vs. Non-Operative Treatment

- Approach
 - Open
 - Arthroscopic
- Biologics
 - PRP
 - Patch Augmentation
- Post-operative Rehabilitation
 - Early vs. Delayed

Approach – Open vs. Arthroscopic

- [Image]
 - [Diagram]

Open Rotator Cuff Repair

- Principles (Neer, 1972)
 - Open superior approach
 - Subperiosteal anterior deltoid take-down
 - Coracoacromial ligament excision
 - Anterior acromioplasty
 - Cuff mobilization
 - Cuff repair to bone through tunnels
 - Early (immediate) passive motion
Arthroscopic Rotator Cuff Repair

- Increasingly more common
 - ↑ 600%, 1996 – 2006
 - Open RCR ↑ 34% during same time period

Potential Advantages
- ↓ deltoid morbidity
- Concurrently address intra-articular pathology
- Better cuff mobilization and visualization
- Better patient acceptance

Potential Disadvantages
- More expensive
- Smaller cuff repair footprint
 - Surface area available for healing
 - Double row may help
- Technically demanding
 - May be volume dependent

Arthroscopic Rotator Cuff Repair

- Anchor Type
 - Single/Double/Triple – loaded
 - Metal/Plastic/Bio
- Repair Configuration
 - Single-Row
 - Double-Row
 - Trans-osseous

Outcomes – Open vs. Arthroscopic

- Multiple studies demonstrate equivalent results
 - Functional improvement: 75-95%
 - Pain relief: 85-100%
- Need to consider:
 - Surgeon experience
 - Case by case basis
- Open repair
 - Chronic, massive tears in a young patient
 - Revisions (Especially following failed arthroscopic repair)
- Arthroscopic repair
 - Reasonable most other times

Outcomes – Open vs. Arthroscopic

- Results for Structural Integrity of RCR by CT/ARI Arthrogram

- Lafosse et al., JBJS, 2007

- Bishop et al., JSES, 2006
Biology in Rotator Cuff Repair

The Problem
- Repair site heals slowly
- Delayed return to activities
- Relatively high failure rate
- When cuff repairs heal, healing occurs by reactive scar formation

Biologics in Rotator Cuff Repair

Structure Composition Organization
Do not return to normal following repair

Goals of orthobiologics for cuff repair
Reestablish the natural bone-tendon interface
Improve biomechanical properties

Biologics – Key Components

Cells

Signals

Matrix

Biologics in Rotator Cuff Repair

- Matrix metalloproteinases / inhibitors
- Angiogenic cytokines
- Growth factors
- Platelet rich plasma
- Stem cells
- Anabolic-androgenic steroids
- Extracellular matrix scaffolds
- Biomimetic scaffolds
- Gene therapy

Biologics in Rotator Cuff Repair

- Matrix metalloproteinases / inhibitors
- Angiogenic cytokines
- Growth factors
- Platelet rich plasma
- Stem cells
- Anabolic-androgenic steroids
- Extracellular matrix scaffolds
- Biomimetic scaffolds
- Gene therapy

Platelet Rich Plasma (PRP)
Platelet-derived growth factors released from activated platelets following injury initiate and drive the early (bFGF, PDGF, IGF) and later (EGF, VEGF, TGF-b, IGF) stages of healing in bone and soft tissue
PRP in Rotator Cuff Repair

- Derived from patient’s blood
- Concentrate platelets
- Numerous clinical studies fail to consistently demonstrate improved outcomes following rotator cuff repair

Scaffolds in Rotator Cuff Repair

- GrafJacket (Wright) Human Dermis
- TissueMend (Stryker) Bovine Dermis
- ZimmerCollagen Porcine Dermis
- CuffPatch (Arthrotek) Porcine SIS
- Restore (Depuy) Porcine SIS
- OrthoADAPT (Pegasus) Equine Pericardium

ECM Scaffolds in Rotator Cuff Repair

- Disparity of structural and material properties
- No clearly defined indications for clinical use
- Augment repairs at higher risk of failure
 - Chronic and large tears
- Interposition?

From Aurora et al., JSES, 2007

Post-Operative Immobilization

- History of immobilization following rotator cuff repair
 - Increase in shoulder stiffness transient (McLaughlin 1944, Dehaye 1965, Nixon 1975, Post 1978)
- Treatment lost popularity based in part on detrimental effects in flexor tendon studies
 - Passive motion (PM) of the hand flexor tendons:
 - Studied in dogs and humans
 - Resulted in improved range of motion (ROM) and decreased stiffness (Gelberman 1982)

In rat model, following rotator cuff injury and repair:

- Tendon to bone healing improved with immobilization
- Passive motion resulted in increased shoulder stiffness and decreased range of motion
- Detrimental effects of immobilization transient

Post-Operative Immobilization

- Passive motion in shoulder:
 - Effect on ROM and stiffness not well studied
 - Small # of studies investigated PM following cuff repair without immobilization
 - Better ROM, but not better shoulder score (Nass 1986)
 - No difference in shoulder score, pain, strength or ROM (Larsson 1998)
 - No studies investigating effects on tendon to bone healing
- Animal model allows study of biomechanical properties, repair integrity, ROM, and stiffness
Post-Operative Immobilization

Cuff & Pupello, JSES, 2012
- 68 pts
- Supraspinatus repair
- Early (POD 2) vs. Delayed (6 wks) ROM
- No difference in:
 - ROM
 - Satisfaction
- Healing (U/S)
 - 85% w/ early ROM
 - 91% w/ delayed ROM

Conclusions

- Etiology of rotator cuff tears multifactorial
- Rotator cuff tears progress
- Early surgical intervention for “tear at risk”
- Arthroscopic techniques improving
- Cuff repair techniques should aim to improve healing
- Biologies complicated, room for future improvement
- Slow early rehab

Thank You