Interventions and Management of Shoulder Rotator Cuff

Lori A Michener PhD, PT, ATC, SCS
Virginia Commonwealth University
Medical College of Virginia
Richmond, VA

Evidence Based Medicine

- Evidence
 - Study results - response of the majority
 - Evidence: 'first choice' of treatment
 - Pt not improving– your pt is in the minority?
- Clinical expertise
 - Valuable, however should not be used IN PLACE of evidence until evidence used
 - “Selective memory” – eyewitness to a crime
- Patient preference and values
 - More important than you think!

Not what you do, but how you sell it
(Scheele J, BMC MSK, 2011; Carroll LJ, J Rheumatol, 2009)

- Expectation of recovery
 - Your expectations for this episode of pain?
 - Do you think your injury will get better, worse, stay the same?
- Do you think PT will help this episode?

** What to do with the answers?**
PT – a sales job – not ‘what’ you do, but how you sell it.

Complaint of “Shoulder Symptom”

- Level 1
 - Screen
 - History (A), Basic PE (B), Red Flags (C)
- Non-shoulder origin of sx
- Shoulder origin of sx

- Level 2
 - Specific Phys Exam (D)
 - Rotator Cuff Impingement
 - Frozen Shoulder
 - Glenohumeral Instability

- Level 3
 - Rehab Dx
 - High Irritability
 - Moderate Irritability
 - Low Irritability

Treatment Categories

- Impingement Syndrome
 - “Control”
- Instability
 - “Too loose”
- Adhesive Capsulitis
 - “Too Tight”
- Other e.g. fracture

- Subacromial Space Disorder
- Anterior – Superior Shoulder pain
Systematic Reviews of SAIS/ Sh P

- 9-16 RCTs
- ↓ pain & ↑ function / disability:
 - Exercise- stretch & strengthen/ MC
 - Exercise + manual therapy to the glenohumeral joint and spine
 - Home exercise programs
 - Passive treatments: not recommended
 - US: not effective

Treatment Approach – Evidence-Based: Bottom Line Up Front

- Unsure (limited or no evidence): Scapular taping – immedi. effects only
- Scapular motor control and stabilization exercise focus
- Core stability training
- Eccentrics focus
- Frequency of treatment
- Progression of treatment
- Dose of exercise and manual therapy

Complaint of “Shoulder Symptom”

<table>
<thead>
<tr>
<th>Level 1 Screen</th>
<th>Non-shoulder origin of sx</th>
<th>Shoulder origin of sx</th>
</tr>
</thead>
<tbody>
<tr>
<td>History (A), Basic PE (B), Red Flags (C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level 2 Medical Dx</th>
<th>Specific Phys Exam (D)</th>
<th>Rotator Cuff / impingement</th>
<th>Frozen Shoulder</th>
<th>Glenohumeral Instability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 2 Rehab Dx</td>
<td>High Irritability Moderate Irritability Low Irritability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dose - Evidence

- High-dose vs low-dose chronic imping.
 (Osteras H, Open Ortho, 2010; Osteras H, Physiother Res Int, 2010)

- Hi-dose: ↑ pain & function 3, 6 & 12 months post
- High-dose:
 - 1-hr session, 9-11 exercises, 3 x 30 reps, 1000 reps per treatment, aerobic ex
- Low −dose: 2 x 10 reps/ exercise
Key Impairments

- Tightness
- Weakness
- Scapular Dysfunction

Clinical Trial of Rehab for Imping.
(Tate AR, McClure PW, Young IA, Salvatori R, Michener LA. JOSPT, 2009)

- Standardized impairment evidence-based Program:
 - Exercise
 - Manual therapy: shoulder and spine
 - Patient education
 - Home exercise program
- Standardized approach for dose, progression, and frequency
- Use this as the framework for defining the treatment approach

Tightness
Flexibility: Self Stretching

- Upper thoracic extension stretch
- Doorway pectoral stretch
- Crossbody stretch
- Shoulder flexion stretch
 - Supine (phase 1) ➔ standing (phase 2,3)
- Shoulder ER stretch
- Shoulder IR stretch (towel)

Upper thoracic extension stretch

- Lie on top of a vertically placed towel under the thoracic spine
- Shoulders ER

Crossbody and Pec stretch

Shoulder flexion stretch
Shoulder IR and ER stretch

Patient Education: Sleeping posture

Strengthening and Motor Control

- Is it strengthening or motor control? Likely a combination
 - Rotator Cuff
 - Scapular Muscles
 - Other shoulder muscles – elevators, etc.

Scapular Muscle

- Upper Trapezius
 - REDUCE activity during arm elevation
 - Motor control can help – mirror, verbal feedback, manual
 - Exercises with more ‘vertical orientation’ increase UT activity

- Lower trap and Serratus
 - INCREASE muscle activity at the right time during ROM

- Lower Trap
 - LT muscle test, rows, scaption, lower rows, ‘down and back’ command

- Serratus Anterior
 - Forward punch, scaption, knee push-up plus, supine punch, dynamic hug, push-up plus

Rotator Cuff Muscle

- Exercise to best activate the cuff
 - IR and ER
 - Shoulder elevation – also hi levels of cuff
 - Respect pain levels and muscle ability to determine start point and progression
Maintain POSTURE & in non-painful ROM.

ER and IR at 0 deg
- Begin with arm at the side
- Pull away / towards your abdomen, then slowly release

Scapular retraction
- Grasp band with both hands, elbows bent to 90°
- Pinch shoulder blades together

Scapular protraction
- Supine to reduce UT activity

Active elevation with upper trap relaxation
- Lift your arm without shrugging

Upper quarter postural exercise
- Sitting or standing
Criteria for progression to Phase 2

- Able to perform 3 sets of 10 reps with red non-latex or Green latex band without substantial pain or fatigue
- Strengthen rotators before progression to shoulder elevation

Scaption and Flexion

Shoulder ER and IR with abduction (45° to 90°)

Quadruped push up plus (camel)

Prone shoulder scapular retraction "T" and "Y"

Phase 3 (not everyone will get to Phase 3)

- Progression: Perform Phase 2 (any color band) for 1 week without an increase in symptoms
- Continue exercises from phase 2 with progression of theraband resistance
Body blade
- 3 x 30 sec bouts
- Good scapular control!
- Start at ~ 60° then 90°

Forearm prone plank with plus
Lawn mower pull

Treatment Approach – Limited Evidence
- Unsure (limited or no evidence):
 - Scapular motor control ex focus
 - Scapular taping
 - Core stability training
 - Eccentrics focus

Evidence – Scapular Dysfunction
- Motor Control:
 - Mechanistic evidence indicated scapular motion / kinematics and muscle activity can improve (Roy JS, Man Ther, 2009; Worsley P, JSES, 2012; DeMey K, JOSPT, 2012; Baybar, PTJ, 1998)
 - Pts reported ↓ pain & ↑ function with motor control focus
- **Limitation: not RCTs**
 (Roy JS, Man Ther, 2009; Worsley P, JSES, 2012; Struyf F, Clin Rheumatol, 2012)

Evidence – Scapular Dysfunction
- Scapular Stabilization addition:
 - Addition of scapular stabilization exercises to the ‘standard’ ex program of stretch and strengthen
 - Improved muscle LT and elevation HHD strength and scapular dyskinesis
 (Baskurt Z, J Back MSK Rehab, 2011)

Scapular Control
and Mobility
Scapular Taping

(Hsu, Yin-Hsin, 2009; Lewis J, JOSPT, 2005; Selkowitz DM, JOSPT, 2007)

Elastic tape

Effects in pts with SAIS:
- ↑ thoracic extension
- ↑ GH & scapular motion
- ↓ UT & ↑ LT ms activity
- Immediate effects only for patient-report

Core strength

- Assess core strength; can they do the following and maintain upright w/o deviations?
 - Single leg stance
 - Single leg squat
 - Single leg squat with arm movement (sport or work activity)

Non-thrust Manipulation (Mobs) & thrust Manipulations

General categories:
1- ↓ pain → evidence supports
2- ↑ spine motion → NO evidence ↑ motion, t-spine, ??? rationale for treatment ???
3- Central mechanisms via spinal cord to brain level → neurophysiological effects of manipulation that can improve ms activity, reduce pain locally and peripherally via central mechanisms

Evidence – Manual Therapy

- MT to GH, & or spine + ex vs exercise alone
 - Better than ex alone to improve function
 (Bang M, 2000; Bennell, 2010; Winters, 1999)
 - GH mobs + ex or GH mobs alone vs. ex
 - No better outcomes (Chen J, 2009; Yiasemides R, 2011; Kachingwe A, 2008)
 - Better outcomes (Senbursa, 2011; Senbursa, 2007; Conroy, 1998)
 - Considering quality of trials and effect sizes...

Evidence – Manual Therapy

- Spinal manipulation
 - Single-arm – 1-2 Rxs of t-spine manip to upper, middle, lower → improve shoulder AROM & patient-rated outcome (Strunce J, 2009; Mintken P, 2010; Boyles R, 2009)
 - RCT – improved outcomes with thoracic manipulation & HEP (Bergman, 2004; Winters J, 1999)

- Spinal manipulation appears to be beneficial. Active ingredient of Manual Therapy package?
Thrust prone

Thoracic Thrust supine

Mintken et al upper and mid

Spine Exercises/ Self- Mobilizations
 - Supine over a towel
 - Supine over a roller
 - Seated thoracic and cervical extension over chair

GH mob: post glide during elevation (Mulligan MWM)
 - Posterior glide during arm elevation

Posterior capsule stretch
 - Stabilize scapula medially using thenar eminance of one hand
 - Use other hand to apply a medially directed force
 - 30 seconds x 3
Evidence – HEP

- Home exercise programs can reduce pain and improve function (Ludewig & Borstad, Occup Environ Med, 2003; Walther M JSES, 2004)
- This approach may be appropriate for some patients, but likely not all, as all patients did not resolve
- Consider this approach!

Recruit patients with SAIS

Clinician History and Examination

Treatment Using Evidence-Based Guidelines

Week 6-8
Discharge exam
(10 visits or sooner if goals met)

3, 6, 12 Month Outcome Measures

Funded by the NATA-REF

Predictors of “Successful” Outcome

- 6 wks – 68% had a ‘successful’ outcome – 50% DASH ↑ & GROC – ‘moderate better’
- Age – younger
- Stop sports or ex b/c of shoulder pain
- Regular exercise 3x/wk
- Symptoms 0-6 wks vs 12 wks
- Shoulder injection
- Some college education
- No pain at night

Predictors of “Successful” Outcome

- Less loss of active IR
- Less loss of passive flexion or abduction
- Shoulder pain reduced 2/10 pts with scapular reposition test
- Serratus anterior weakness
- What’s else? Predictors of non-success and long-term outcomes... stay tuned!
RCD Management - Summary

- Treatment approach
 1. Strengthen /Motor Control – Rotator cuff, scapular, shoulder
 Motor control alone – unclear of effectiveness
 2. Flexibility – post cuff, pec minor, lats, CT spine
 3. Scapular Dysf – Scap taping + Motor Control, addition of scapular stabilization exercises
 4. Home exercise program
 5. Modalities – limited use, only in combination with active treatment

 - Pain, ↑ joint motion, other neurophysiological effects, ?? biomechanical at spine??
 - GH – alone – doesn’t appear effective

7. Use of impairments prn

Guiding Treatment
- Hi – Moderate – Lo irritability
- Dose: Hi reps (dose)
- Evidence 1st, then if not successful consider other interventions
- Pt expectations - recovery, PT, PT intervention.
- Judge outcome - pt-report & performance

RCD Management

Consensus (evidence):
- PT helps the majority
- Exercise – stretch, strengthen, MC, HEP
- Addition of manual therapy to Exercise – Combined or spine
- US – not effective
- HEP may be enough for some folks

Controversy (weak/no evidence):
- Guiding treatment- irritability?
- Hi dose (reps)
- Motor Control
- Scapular taping – only immediate effects
- Other modalities – ice, acupuncture, etc...
- Spine MT – can impair. drive decision-making?
- Core stability training

Thank you for your kind attention!

Question and Answer Time

"Mr. Osborne, may I be excused? My brain is full."
Rotator Cuff Tendinopathy: Examination

Consensus and Controversies in Rehabilitation of Rotator Cuff Disease:
Examination

Phil McClure PhD, PT
mcclure@arcadia.edu

Rotator Cuff Tendinopathy: Diagnosis

Does it matter?

• Guide Intervention
 – Is “rotator cuff tendinopathy” a homogeneous group?
 – If not, how do we subgroup?

• Inform Prognosis

Does the classic pathoanatomic model work for rehabilitation?

Orthopaedic Section: Shoulder Guideline Group

Diagnostic Classification Scheme

• Screening
• Pathoanatomic Dx (Medical Dx)
• Rehab Dx (Irritability)

Complaint of “Shoulder Symptom”

Level 1 Screen

History (A), Basic PE (B), Red Flags (C)

Non-shoulder origin of sx Shoulder origin of sx

Level 2 Pathoanatomic (Med Dx)

Specific Phys Exam (D)

Rotator Cuff / Impingement Frozen Shoulder Glenohumeral Instability

Level 3 Rehab Dx

High Irritability (E) Mod Irritability (F) Low Irritability (G)

Pathoanatomic Dx vs “Rehab” Dx

• Pathoanatomic Dx (Medical Diagnosis)
 – Pathoanatomic
 – Primary Tissue Pathology
 – Stable over episode of care
 – Guides general Rx strategy
 – Informs prognosis
 – Important for Surgical Decisions

• Rehab Diagnosis
 – Sx Severity / Impairment
 – “Irritability”
 – Current intensity
 – Often changes over episode of care
 – Guides specific rehab Rx
 – May inform prognosis

Rotator Cuff Tendinopathy: Examination Overview

• Differential Dx (Pathoanatomic/Medical Dx)
 – Be sure we have a problem that we can treat
 – Puts us in the “ball park”

• Identification of Key Impairments (Rehab Dx)
 – Guides specific rehab treatment
 – Weakness (Motor control, inhibition, disuse atrophy, tears)
 – Mobility (tightness or laxity... shoulder girdle & spine)
 – Scapular Dysfunction (due to weakness or mobility)
 – Environmental factors leading to overuse

• Outcome Measures (How do we keep score?)
Rotator Cuff Tendinopathy: Examination

Differential Diagnosis

- Things that may look like RC tendinopathy... but are not
 - Cervical spine
 - Pain location, ROM, Upper Limb tension test, Spurlings, Traction test
 - Thoracic Outlet
 - Pain location, Upper Limb tension test, palpation brachial plexus @ Erb's point, Adson’s
 - Frozen shoulder
 - LDM in multiple planes, females, 40-60 ya
 - Nerve injury (suprascapular, axillary, long thoracic)
 - Hx: traction or direct blow, weakness, palpation
 - Red Flags (Cardiac, Pancoast’s tumor)
 - Pain location, males > 50, smoking

Reliability and Diagnostic Accuracy of the Clinical Examination and Patient Self-Report Measures for Cervical Radiculopathy

<table>
<thead>
<tr>
<th>Test</th>
<th>-LR</th>
<th>+LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULTia</td>
<td>1.2 (neg helps rule)</td>
<td>1.3</td>
</tr>
<tr>
<td>Involv Cerv Rot < 60 deg</td>
<td>2.3 (neg helps rule)</td>
<td>1.8</td>
</tr>
<tr>
<td>Distraction Test</td>
<td>62</td>
<td>4.4 (pos helps rule)</td>
</tr>
<tr>
<td>Spurlings’</td>
<td>58</td>
<td>3.6 (pos helps rule)</td>
</tr>
<tr>
<td>2 of 4</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>3 of 4</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>4 of 4</td>
<td>20.3</td>
<td></td>
</tr>
</tbody>
</table>

Wanner et al, Spine 2003 (NCS/EMG as criterion)

Pain Location

- Anterolateral pain in all
 - Posterior pain 3/10
 - No pain above acromion or in supraspinatus muscle / scapular area

Hypertonic saline injection under fluoroscopic guidance

Gerber, 98, JSES

Pain Location

- Subacromial injection of 1.5 ml of 5% hypertonic saline
 - Anterolateral shoulder pain
 - Pain above acromion rare
 - Pain below elbow possible 4/17

Stackhouse et al. 2012 JSES

Brachial plexus entrapment/TOS

Special tests

- Elevated Arm Stress Test
- ULTT
- Others

Positive test = reproduce chief complaint sx

Diagnostic accuracy uncertain because gold standard is lacking
Rotator Cuff Tendinopathy: Examination

Differential Diagnosis

• Things that may look like RC tendinopathy... but are not
 – Cervical spine
 • Pain location, ROM, Upper Limb tension test, Spurings, Traction test
 – Thoracic Outlet
 • Pain location, Upper Limb tension test, palpation brachial pleus @ Erb’s point, Adion’s
 – Frozen shoulder
 • LOM in multiple planes, females, 40-60 yo
 – Nerve injury (suprascapular, axillary, long thoracic)
 • Hx: traction or direct blow, weakness, palpation
 – Red Flags (Cardiac, Pancoast’s tumor)
 • Pain location, males > 50, smoking

• Things that may mimic or accompany RC tendinopathy
 • Full thickness RC tear
 – Age, weakness w/empty can, ER lag signs, Drop Arm
 • SLAP lesion
 – Hx (click,pop,catch) + multiple tests
 – Biceps load, crank test, dynamic shear, Ant Slide, Speed’s
 • GH Instability
 – Hx, Apprehension/Relocation test, Sulcus
 • AC joint
 – Pain location, palpation, horiz adduction, O’brien’s
 • Myofascial Trigger Points
 – Palpation of muscle belly
Rotator Cuff Tendinopathy: Examination

Differential Diagnosis

- Things that may mimic or accompany RC tendinopathy
- Myofascial Trigger Points
 - Palpation of muscle belly
 - Repro CC pain, taut band

- Reasons why the patient may not respond well
 - Full thickness RC tear
 - Age, weakness w/empty can, ER lag signs, Drop Arm
 - SLAP lesion
 - Hx (click, pop, catch) + multiple tests
 - Biceps load, crank test, dynamic shear, Ant Slide, Speed's
 - GH Instability
 - Hx, Apprehension/Relocation test, Sulcus
 - AC joint
 - Pain location, palpation, horia adduction
 - Myofascial Trigger Points
 - Palpation of muscle belly

?? Do these negatively affect prognosis?

Rotator Cuff Tendinopathy: Examination

Differential Diagnosis

- Things that may mimic or accompany RC tendinopathy
- Rotator Cuff Tendinopathy
 - aka subacromial impingement
 - Neer's
 - Hawkin's
 - Jobe's Empty can (isom resist elev w/IR in plane of scap)
 - Painful Arc (60-120 deg)
 - Isom resist ext rot (Infraspinatus test)
 - Speed's
 - Horizontal adduction
 - palpatation

- Painful Arc
- Speed's
- Cross-body Adduction
- Drop Arm test
- Supraspinatus (empty-can position)
- Infraspinatus (Arm at side)

Best Overall Combination
- Hawkin's
- Painful Arc
- Infraspinatus test

BJSM 2012

...more than you ever wanted to know about diagnostic accuracy!

Conclusions Based on data from the original 2008 review and this update, the use of any single SPPE test to make a pathognomonic diagnosis cannot be unequivocally recommended. There exist some promising tests but their properties must be confirmed in more than one study. Combinations of SPPE tests provide better accuracy, but marginally so. These findings seem to provide support for stressing a comprehensive clinical examination including history and physical examination. However, there is a great need for large, prospective, well-designed studies that

Diagnostic Accuracy of Clinical Tests for the Different Degrees of Subacromial Impingement Syndrome

Park et al, JBJS, 2005

- Large Series, n= 359
- Physical Exam findings compared with Diagnostic Arthroscopy
- 8 tests
 - Neer's
 - Hawkin's
 - Painful Arc
 - Speed's
 - Cross-body Adduction
 - Drop Arm test
 - Supraspinatus (empty-can position)
 - Infraspinatus (Arm at side)

Pain

Weakness

High Sensitivity
- Negative test helps rule out
 - Neer's
 - Hawkin's
 - Painful Arc

High Specificity
- Positive test helps rule in
 - Speed's test
 - Cross-body Adduction
 - Drop Arm test
 - Supraspinatus (empty-can position)
 - Infraspinatus (Arm at side)
Rotation Cuff Tendinopathy: Examination

Diagnosis of Rotator Cuff Tendinopathy (aka subacromial impingement)

My bottom lines:
- **Always** some degree of uncertainty
- Correlate with hx and sx's
- Look for multiple tests to be positive/negative
- Try to identify other coexisting pathology
 - Do these affect outcome?
- **Pathoanatomic diagnosis** may not be critical to directing rehab treatment

Rotator Cuff Tendinopathy: Examination

Differential Diagnosis

Summary: Pathoanatomic/Medical Dx
- Rule Out Other Diagnoses
 - C-spine / TOS / FrozenShdr / Nerve Injury / Red Flag
- Identify Additional problems
 - RC Tear / SLAP / Instability / AC Jt / Trigger Pts
- Rule In RC tendinopathy
 - (+) Neer or Hawkins
 - (+) Pain/weakness with resisted Empty can or Ext Rot
 - Painful arc

“Rehab Diagnosis”

- Identify Stage of Irritability
- Identify specific impairments that guide treatment
 - Weakness (Cuff)
 - Tightness (post capsule, pec minor, lats, t-spine)
 - Scapular Dysfunction

Irritability Classification

<table>
<thead>
<tr>
<th>Irritability</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>History and Exam</td>
<td>• High Pain (>7/10) • Right or rest pain • Intermittent Pain at end ROM • High Disability (DASH, ASES)</td>
<td>• Mod Pain (4-6/10) • Pain at end ROM • Mod Disability (DASH, ASES)</td>
<td>• Low Pain (<3/10) • Right or rest pain • None • Min pain with pressure • ARROM = PROM • Low Disability (DASH, ASES)</td>
</tr>
<tr>
<td>Treatment Focus</td>
<td>• Pain reduction + activity modification • Impairments + basic function</td>
<td>• Pain reduction + basic function</td>
<td>• High demand functional activity restoration</td>
</tr>
</tbody>
</table>

Kelley et al JOSPT 09
Rotator Cuff Tendinopathy: Examination

Specific Impairments: Cuff Weakness

- Cuff “weakness” (?) inhibition allows superior migration which may perpetuate impingement

Mechanisms of Impingement

Muscle Performance

- Several studies have documented abnormal superior glide under different conditions:
 - Cuff tear:
 - 100% with full RC tear
 - 14% after cuff repair
 - Paletta JSES ’97
 - Cuff tear or Stage II impingement
 - Deutsch JSES ’96
 - Muscle fatigue
 - Chen JSES ’99

“Gaps” related to muscle performance

- Does an isometric test of peak force adequately capture “muscle performance”?
 - Motor control during dynamic activity?
 - Deltoid/cuff balance?
 - Endurance?
 - What is the source of weakness?
 - Poor motor control => quality vs quantity in exercise
 - Poor neural activation from CNS => estim, biofeedback or better pain control to avoid inhibition
 - Disuse atrophy => traditional PRE
 - Tear => surgery or compensatory strategy

Rotator Cuff Tendinopathy: Examination

Specific Impairments: Posterior Tightness

- Posterior Capsule
 (Harryman, 1990)
 - Increased posterior shoulder tightness
 - HH sup translation & IGH IR AROM
 - Decreased subacromial space
 - Mechanical compression of SA tissues

- Glenohumeral Internal Rotation Deficit

Decreased IR ROM on side of impingement compared to unaffected side

Tyler et al, JOSPT, 1999

Awan et al APMR, 2002

ASES: Richards et al JSES 94

McLennon et al JSES, 1996

Edwards et al JSES 2002

Posterior Shoulder Tightness: What do we measure?
Rotator Cuff Tendinopathy: Examination

Specific Impairments: Posture, Thoracic Spine, Pec minor Tightness

- Posture
 - Thoracic kyphosis and protracted shoulder may decrease subacromial space and put rot cuff at mechanical disadvantage
 - No good evidence suggesting posture is strongly related to sx's
- Pec Minor tightness
 - May alter scapular kinematics
 - Less post shr, less scap ext rot
 - Borstad 05 JOSPT
 - Shorter in symptomatic HS swimmers (Tate 2012, JSR)
 - No good evidence suggesting pec minor is strongly related to sx's

- Reduced latissimus length indicated by obviously decreased flexion in B compared to A

PROM: Internal Rotation 90° abduction

- Supine
- Humerus 90° abduction, elbow flexed 90°
- Fulcrum at olecranon process
- Stationary arm perpendicular to floor
- Align moveable arm with ulnar styloid
- End the movement when the acromion elevates anteriorly (beyond dashed line in top picture)

PROM: Horizontal adduction

- ICC= 0.79
- MDC=1.8 deg
- r= 0.54 w/IR90

- ICC= 0.94
- MDC=4.2 deg
- r= 0.35 w/IR90

Salamh, JSIPT, 2012
Myers, AJSM 2007

Total Arc of Rotational Motion

- Throwers
 - Increased ER
 - Decreased IR
 - May be attributable to bony changes in glenoid or humeral retroversion

Accessory Motion: GH and AC jts

- Pain
- End-Feel
- Motion
- Reliability?

Accessories: GH and AC jts

Rotator Cuff Tendinopathy: Examination
Rotator Cuff Tendinopathy: Examination

Specific Impairments: Tightness (Thoracic mobility)

- Spring testing
 - Based on examiners perception of mobility at a level relative to those above and below and examiner’s experience and perception of normal
 - Hypomobile/ Hypermobile
 - ? Pain
- Biomechanic vs Neurophysiologic Mechanisms
- If not stiff, do we still manipulate?

Specific Impairments: Scapular Dysfunction

- Is it related to common shoulder pathologies?
 - **Maybe**
 - Most studies show small (but stat sig) motion differences between groups (sx vs asym)
 - Large variability in “normal” or asymptomatic subjects
 - Strong evidence showing scap dysfunction causing shoulder pain / pathology is lacking
 - Must try to relate sx’s to scap dysfunction in specific patient

Classifying scapular motion: the scapula dyskinesis test (SDT)

- 5 repetitions:
 - Flexion (weighted)
 - Abduction (weighted)
- Rate scapular motion on each test as:
 - **Normal (N)** motion: no evidence of abnormality
 - Medial border and inferior angle relatively flat
 - **Subtle (S)** dyskinesis: mild/questionable evidence of abnormality, not consistently present
 - **Obvious (O)** dyskinesis: striking, clearly apparent abnormalities, evident on at least 3/5 trials
 - Winging ≥1” is considered abnormal
 - May be unilateral or bilateral
 - Subjects may repeat test

Scapular Dyskinesis: Winging

- Movement of medial border and/or inferior angle away from the thorax, becoming more prominent during arm motion with a sulcus/gap between the scapula and the thorax:
 - ≥1” is considered abnormal
 - May be unilateral or bilateral

McClure
Dyskinesis: Dysrhythmia

Describes a lack of “smooth” scapulohumeral rhythm
- A “hitch or a jump in the otherwise smooth motion.”
- Most common pattern is early/excessive scapular elevation (shrug)
- Another common pattern: rapid downward rotation during lowering (dump)

Are Symptoms Related to Dyskinesis?

- Penn Shoulder Score (Leggin et al 06)
 - Pain Sub-Scale
 - Total 30
 - Sx’s at rest (0-10)
 - Sx’s with normal use (0-10)
 - Sx’s with strenuous use (0-10)
 - n = 104
 - Only subjects rated as obvious or normal by two raters
 - Rater disagree or subtle discarded
 - Odds ratios (95% CI)
- Does having dyskinesis increase your odds of having sx’s? ... NO

Symptom Altering Tests

- Modified Scapular Assistance Test
 - Posteriorly tilt and upwardly rotate scapula (Rabin et al. JOSPT 2006)
 - Documented reliability (77-91% agreement)
 - 40-80% tested “positive” (≥ 2pt change)

- Scapula Retraction Test
 - Kibler et al. JOSPT, 2004
 - Patients and healthy
 - Increased strength with scap stabilization
 - No sig change in pain

- Scapula Reposition Test
 - Tate, McClure, Kaneha, Irwin (JOSPT 2008)
 - Overhead athletes, Empty can test
 - 26-29% had significant increase in strength
 - 48% had decrease in pain

Evaluation of Clinical Assessment Methods for Scapular Dyskinesis

Compared asymmetry in 3D testing
- sx’s (n=35) vs no sx’s (n=21)
- Flexion probably most sensitive
- Asymmetry common
- Pain > 6/30 - Sx’s + Sx’s
 - Dyskinesia 61 15
 - OR = 0.68 (0.2 -2.25)

Measuring Shoulder Outcome: Keeping Score!
Shoulder Pain

Mintken et al JSES 2009
- Ave of 3 Pain items
- NPRS 0-10
 - Rest
 - Normal ADL
 - Strenuous
 - 4-6 wk Rx
- MCID: 2.2

Bottom Line: Look for at least a 2 pt change in pain

Shoulder Outcome Scales

- DASH (Disabilities of the Arm, Shoulder, Hand)
- Quick DASH
- ASES (American Shoulder and Elbow Surgeons)
- PENN Shoulder Scale
- Lots of others!

Shoulder Outcome Scales

<table>
<thead>
<tr>
<th>Scale</th>
<th>Content</th>
<th>MDC</th>
<th>MCID</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASH</td>
<td>30 questions sx's (5), & function (25) 0-100 scale</td>
<td>12.8</td>
<td>10.2</td>
</tr>
<tr>
<td>Quick DASH</td>
<td>11 questions sx's (3) & function (8) 0-100 scale</td>
<td>11.2</td>
<td>8.0</td>
</tr>
<tr>
<td>ASES</td>
<td>10 function (50%) Pain (50%) 0-100 scale</td>
<td>9.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Penn SS</td>
<td>30 Pain 10 Satisfaction 100 function 100 Total</td>
<td>12.1</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Evaluate/Manage Patient Expectations

Questions
- Do you expect to get better?
- Do you think PT will be helpful?
- Any specific treatment you think will be most effective?
- Use to evaluate and influence patient expectations.

Rotator Cuff Tendinopathy: Examination Summary

- Differential Dx (Medical Dx)
 - C-spine, TOS, Frozen Shdr, Nerve Injury, RedFlags
 - RC Tear, labral injuries, GH instab, AC jt, Trigger pts
- Rehab Dx
 - Irritability (guides Rx strategy and intensity)
 - Key Impairments
 - "Weakness" (cuff & scapula)
 - Tightness (post capsule, pec minor, lats, cervicothoracic)
 - Scapular Dysfunction (motion and sx altering tests)
- Outcome Measures (keeping score)
 - DASH, Quick DASH, ASES, Penn Scale, others
Rotator Cuff: Examination

Consensus (evidence):
• r/o other pathology
• Key sx's
 – Ant/lat arm pain
 – Often overuse
• Key Signs
 – Multiple should be present
• Key Impairments:
 – Cuff “weakness”
 – Source? Endurance?
 – Posterior tightness
• Use an Outcome scale

Controversy (weak/no evidence)
• Does co-existing pathology predict worse outcome or require different treatment?
• What impairments are truly related to sx’s? (causal or perpetuate)
 – Scapular Dysfunction
 • Motor control / weakness
 • Tightness
 – Pec tightness (clinical measure?)
 – Thoracic mobility