Integrating Movement System Impairments and Manual Therapy in assessment and treatment of the shoulder

> Michael Wong, DPT OCS FAAOMPT Marshall LeMoine, DPT OCS FAAOMPT

Shoulder pain with mobility deficits (Adhesive capsulitis)
 Shoulder pain with muscle power deficits (Rotator cuff syndrome/ subacromial pain syndrome)

Shoulder pain with movement coordination impairments

(Instability/sprain) Shoulder pain with radiating pain (TOS)

Subacromial impingement syndrome/subacromial pain syndrome

- Shoulder pain with muscle power deficits
- 44% to 60% of all conditions that cause shoulder pain
- Picavet (2003)
- Pope (1997)
- Urwin (1998)

Evidence for impairments that drive shoulder pathology

- Poor posture
- Altered scapular kinematics
- Limited flexibility of the posterior shoulder structuresRotator cuff and scapular muscular weakness and imbalance

Diagnosis based on:

- Alignment
- Movement tests
- Secondary/ corrected tests

Effect of Posture on Acromiohumeral Distance With Arm Elevation in Subjects With and Without Rotator Cuff Disease Using Ultrasonography

NITIN KALRA, PT. MS1 + AMEE L. SEITZ, PT. PhD. OCS2 + N. DOUGLAS BOARDMAN III, MD2 + LORI A. MICHENER, PT. PhD. ATC. SCS4

J Orthop Sports Phys Ther 2010;40(10):633-640

Acromialhumeral distance measured at 2 positions in 3 postures
Increased space in upright posture at 45 deg abduction

 Anteriorly tilted scapulae (Culham and Peat, 1994; Kaebetse et al., 1999)

- Excessive cervical flexion may increase tension in levator scapulae exaggerating the anterior tilt (Ludewig and Cook, 1996)
- Resultant scapular position may narrow subacromial space (Solem-Bertoft et al., 1993)

Manual therapy for shoulder pathology

STEPHANIE MUTH, PT, PhD1 • MARY F. BARBE, PhD2 • RICHARD LAUER, PhD3 • PHILIP MCCLURE, PT, PhD, FAPTA4

The Effects of Thoracic Spine Manipulation in Subjects With Signs of Rotator Cuff Tendinopathy

J Orthop Sports Phys Ther 2012;42(12): 1005-1016.

TABLE 3			ST-TSM DATA FOR TCOME MEASURES	
	Pre-TSM*	Post-TSM*	Difference [†]	P Value
Pain, NPRS##				
Jobe	2.9 ± 1.2	0.3 ± 0.5	-2.6 ± 12 (-3.1, -2.2)	<001
Neer	3.2 ± 1.2	0.6 ± 0.9	-2.6 ± 1.3 (-3.0, -2.1)	<001
Hawkins-Kennedy	3.2 ± 1.1	0.4 ± 0.7	-2.8 ± 1.3 (-3.3, -2.3)	<001
Consistentian	0.5 ± 1.2	0.1 ± 0.4	-0.4 ± 0.9 (-0.7, 0.0)	
Pain, HT elevation in 3 planes			[
Sagittal	2.3 ± 1.7	0.3 ± 0.6	-2.0 ± 0.3 (-2.6, -1.4)	<001
Scapular	1.2 ± 1.5	0.1 ± 0.4	-1.1 ± 1.4 (-1.7, -0.6)	<001
nunai	2.6 ± 1.7	0.3 ± 0.8	-2.3 ± 1.5 (-2.8, -1.8)	<001
Force production, kgs	7.4 ± 2.5	99 ± 2.9	25 ± 14 (43, 67)	<001
Pain and function				
PSST	79.8 ± 11.4	874 ± 10.9	7.6 ± 9.3 (4.1, 11.1)	< 001
SPAM-DASH*	371 ± 23.1	20.3 ± 23.1	-16.8 ± 16.4 (-22.5, -10.2)	< 001
ROM, degli				
Thoracic flexion/extension	47.4 ± 14.8	45.7 ± 14.6	$-18 \pm 76(-45, 0.9)$.20
Cervical rotation	117.9 ± 22.2	119.4 ± 21.5	1.4 ± 10.0 (-2.8, 5.0)	.50
HT elevation (sagittal plane)	128.1 ± 276	133.2 ± 22.3	5.1 ± 16.8 (-1.8, 10.2)	.30

	Clinical Pred	liction Rule Criteria	Identified in Logist	lc Regression Ana	lysis	
Pain-free shoulder fle	xion <127*					
Shoulder internal rota	ation <53° at 90° of at	oduction				
Negative Neer test						
Not taking medicatio	ins for their shoulder p	ain				
Symptoms less than	90 d					
No. of Predictor			Positive Likelihood	Probability of Success	Patients Who Satisfied:	
ariables Present	Sensitivity	Specificity	Ratio	(%)"	Success	Nonsuccess
/iet all 5	.04 (.01, .15)	1.0 (.86, 1.0)		100	2	0
/iet at least 4	.27 (.15, .41)	1.0 (.86, 1.0)		100	13	0
Aet at least 3	.51 (.37, .65)	.90 (.73, .97)	5.3 (1.7, 16.0)	89	25	3
/iet at least 2	.90 (.77, .96)	.61 (.42, .78)	2.3 (1.5, 3.6)	78	44	12
/let at least 1	1.0 (.90, 1.0)	.19 (.08, .38)	1.0 (1.2, 1.5)	61	49	25
	2 carculated using the	positive intennood rate	os ano assumes a pres	creprocability of or		
	free should			fabductio	2	
■ Pain ■ Shor	ulder interna	al rotation<		of abduction	n	
■ Pain ■ Shor		al rotation<		of abduction	n	

- 30-180 seconds Avoid compensations
- Seated thoracic extension **F** • Sitting • Hands clasped behind neck • Lift arms and extend thorax • Avoid compensation at hips or lumbar

Seated or standing extension against wall

Straighten back as much as possible 3x15 reps 10 second hold at end range

Rehabilitatio	m		Control			
52.5±2.2	49.1±2.0	0.017	52.8±3.6	54.8±3.6	0.272	0.017
33.013.2		0.247	1-20204	51.5 2 0.0	0.071	0.920
						0.891
						0.364
						0.504
						0.079
						0.970
						0.920
						0.982
37.8±3.6	38.0±3.7	0.860	34.4±3.8	36.6±3.5	0.473	0.560
	Rehabilitatio 525±22 37.4±5.7 222±32 35.1±5.0 31.1±4.8 30.3±4.3 51.0±3.5 52.9±4.4 37.9±3.7	Rehabilitation 52.5±2.2 49.1±2.0 37.4±5.7 38. 49 22.2±3.2 210. 69 35.1±5.0 33.7±5.4 49 31.1±4.8 29.6±4.4 30.3±5.4 31.0±5.5 49.7±5.0 52.9±4.3 51.0±3.5 49.7±5.0 52.9±4.4 37.9±3.4 49.2±4.4 52.3±4.4	Rehabilitation 0.017 374±57 38 49 0.836 222±32 217 49 0.731 51±50 337554 0.612 0.711 311±48 296±44 0.500 0.137 323±43 235±44 0.404 0.500 379±3.7 408±3.8 0.029 0.731	Relubilitation Control 52.52.2 49.1±2.0 0.017 52.8±3.6 77.4±5.7 33 1.9 0.836 300.26.4 52.52.2 24.9 0.751 15.8±4.5 551.±5.0 33.7±5.4 0.612 41.3±6.7 51.1±5.0 33.7±5.4 0.62.0 30.1±5.0 30.1±5.0 30.1±5.0 51.0±5.0 37.7±5.4 0.62.0 30.1±5.0 30.7±5.0 0.62.2 30.2±5.0 30.7±5.0 30.2±5.0	Rehabilitation Control 52.5±2.2 49.1±2.0 0.017 52.8±3.6 54.8±3.6 77.4±5.7 38 4.9 0.836 30.0±6.4 29.7±5.7 52.5±2.2 49.0 0.836 30.0±6.4 29.7±5.7 53.1±5.0 33.7±5.4 0.612 11.2±6.7 31.2±6.2 51.1±5.0 33.7±5.4 0.612 11.2±6.7 37.2±6.2 50.1±5.0 33.7±5.4 0.612 9.37±5.0 72.4±6.2 50.1±5.0 33.7±5.4 0.612 9.37±5.0 72.2±7.2 50.2±4.4 52.3±4.4 0.8±1.8 30.7±7.4 70.7±7.4 57.9±1.4 0.8±3.8 0.029 36.6±2.9 35.2±3.8	Relubilitation Control 52.5±2.2 49.1±2.0 0.017 52.8±1.6 54.8±3.6 0.272 77.4±5.7 38 4.9 0.836 30.0±6.4 29.7±5.7 0.936 52.5±2.2 34.9 0.751 15.8±4.5 18.1±4.0 0.407 53.1±5.0 33.7±5.4 0.612 11.5±6.3 37.2±6.2 0.500 31.1±4.8 20.6±4.4 0.500 30.1±5.0 32.2±5.5 0.479 31.0±3.2 25.2±3.0 0.751 30.7±4.4 0.502 30.7±4.4 0.512.40 31.0±3.4 25.2±3.6 0.500 30.1±5.0 32.2±5.5 0.479 31.0±3.4 20.5±4.4 0.502 30.7±4.4 0.512.40 0.512.41 0.512.41 32.0±4.4 52.3±4.4 83.413 30.6±1.3 0.641 32.5±2.41 0.752.41 37.9±3.7 4.8±3.54 0.8±3.54 0.059 36.6±2.9 35.2±1.8 0.752.41

Current Concepts in the Scientific and Clinical Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature

MICHAEL M. REINOLD, PT, DPT, ATC, CSCS¹ + RAFAEL ESCAMILLA, PT, PhD, CSCS, FACSM² + KEVINE, WILK, PT, DPT³ J Orthop Sports Phys Ther 2009; 39(2):105-117.

Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo

Philip W. McClure, PhD, PT,^o Lori A. Michener, MEd, PT, ATC,^b Brian J. Sennett, MD,^c and Andrew R. Karduna, PhD,^d Glenside and Philadelphia, Pa, and Richmond, Va J Shoulder Elbow Surg 2001;10:269-77

Scapular norms McCulre, 01; Ludewig, 96, 09:

Resting

- •3" abduction
- •T2-T7
- •ER 10°
- •Ant tilt°
- Neutral up/down rotation

Scapular norms McCulre, 01; Ludewig, 96, 09: Elevation • Inferior angle to mid axillary line • Acromion to C6-7 • ER 15-25° • 50-60° up rotation • Post tilt 20°

The Association of Scapular Kinematics and Glenohumeral Joint Pathologies

PAULA M. LUDEWIG, PT, PhD¹ • JONATHAN F. REYNOLD'S, PT, PhD²

J Orthop Sports Phys Ther 2009; 39(2):90-104

SUMMARY OF SCAPULAR KINEMATICS TABLE 2 DURING ARM ELEVATION IN HEALTHY AND PATHOLOGIC STATES							
Group	Healthy	Impingement or Rotator Cuff Disease	Glenohumeral Joint Instability	Adhesive Capsulitis			
Primary scapular motion	Upward rotation	Lesser upward rotation	Lesser upward rotation	Greater upward rotation			
Secondary scapular motion	Posterior tilting	Lesser posterior tilting	No consistent evidence for alteration	No consistent evidence for alteration			
Accessory scapular motion	Variable internal/ external rotation	Greater internal rotation	Greater internal rotation	No consistent evidence for alteration			
Presumed implications	Maximize shoulder range of motion and available sub- acromial space	Presumed contributory to subacromial or internal impingement	Presumed contribu- tory to lesser infe rior and anterior joint stability				

Differences in 3-Dimensional Shoulder Kinematics Between Persons With Multidirectional Instability and Asymptomatic Controls

Jena B. Ogston, PhD, $PT^{\dagger,*}$ and Paula M. Ludewig, PhD, $PT^{\dagger,*}$

Am J Sports Med August 2007 35 1361-1370

Significant decrease in scapular upward rotation in scaption and abduction plane

Interrater reliability of clinical tests to evaluate scapulothoracic motion

Evelyn Baertschi^{1,3*}, Jaap Swanenburg¹, Florian Brunner² and Jan Kool³

Baertschi et al. BMC Musculoskeletal Disorders 2013, 14:315 http://www.biomedcentral.com/1471-2474/14/315

The Scapular Assistance Test Results in Changes in Scapular Position and Subacromial Space but Not Rotator Cuff Strength in Subacromial Impingement

AMEE L. SEITZ, PT, DPT, PhD, OCS¹ • PHILIP W. MCCLURE, PT PhD² • SHERYL FINUCANE, PT, PhD³ • JESSICA M. KETCHUM, PhD⁴ MATTHEW K. WALSWORTH, MD, PT³ • N. DOUGLAS BOARDMAN III, MD⁴ • LORI A. MICHENER, PT, PhD, ATC, SCS¹

Orthop Sports Phys Ther 2012;42(5):400-412,

Alterations in Shoulder Kinematics and Associated Muscle Activity in People With Symptoms of Shoulder Impingement

> Paula M Ludewig and Thomas M Cook PHYS THER. 2000; 80:276-291.

Insufficient Scapular Upward Rotation: Intervention

- Improve posture/alignment
- Tape
- Improve strength/activation
- Serratus anterior
- Lower trapezius
- Improve flexibility, inhibition
- Rhomboid
- Levator Scapulae
- Retrain coordination with upward rotation:
- Shoulder flexion: Wall, Quadruped, Sidelying Shoulder

Current Concepts in the Scientific and Clinical Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature

MICHAEL M. REINOLD, PT, DPT, ATC, CSCS¹ * RAFAEL ESCAMILLA, PT, PhD, CSCS, FACSM² * KEVIN E. WILK, PT, DPT³

J Orthop Sports Phys Ther 2009; 39(2):105-117.

Conscious Correction of Scapular Orientation in Overhead Athletes Performing Selected Shoulder Rehabilitation Exercises: The Effect on Trapezius Muscle Activation Measured by Surface Electromyography

KRISTOF DE MEY, PT¹ • LIEVEN DANNEELS, PT, PhD¹ • BARBARA CAGNIE, PT, PhD¹ LIES HUYGHE, PT¹ • ELIEN SEYNS, PT¹ • ANN M. COOLS, PT, PhD¹

J Orthop Sports Phys Ther 2013;43(1):3-10.

Effect of abducting and adducting muscle acitivity on glenohumeral translation, scapular kinematics and subacromial space width in vivo

H. Graichen^{a,*}, S. Hinterwimmer^{a,b}, R. von Eisenhart-Rothe^a, T. Vogl^e, K.-H. Englmeier^d, F. Eckstein^e

Journal of Biomechanics 38 (2005) 755-760

- Isometric contraction measured at multiple angles
- Adducting muscle activity had significant increase of the subacromial space

Effect of the Scapula Reposition Test on Shoulder Impingement Symptoms and Elevation Strength in Overhead Athletes

> ANGELA R. TATE, PT, PhD¹ • PHILIP MCCLURE, PT, PhD² STEPHEN KAREHA, PT, DPT, ATC, CSCS³ • DOMINIC IRWIN, PT, DPT⁴

J Orthop Sports Phys Ther 2008;38(1):4-11.

- 98 subjects with + impingement signs
- Scapula passively posterior tilted and retracted
- 26% stronger in empty can position

Π

Movement with correction

 <u>Video shoulder flexion with excessive scap abduction and</u> <u>correction</u>

Excessive Scapular Abduction: associated Impairments

- •Weak rhomboid, middle and lower trapezius
- Cooks, 2006: decreased/latent activity in impingement group
- Abductors dominant/stiff:
- Pectoralis major, Teres major/minor

Excessive Scapular Abduction: Intervention

- Improve posture/alignment
 Tape
- Arm positioning
- Improve strength/activation
- Middle/lower trapezius
- Rhomboid
- Improve flexibility, inhibition
- Pectoralis major
- Teres major/minor

- Improve thoracic spine extension
- Improve GH posterior capsule
- mobility • Wilk, 2002

Excessive Scapular Abduction

- Taping
- Back to wall abduction/external rotation

Muscle Strength/Activation

- What we know
- Timing alterations occur
- Scapular weakness is common
- •Exercises need to be specific to strength scapular muscles

Normalization procedures using maximum voluntary isometric contractions for the serratus anterior and trapezius muscles during surface EMG analysis *

Richard A. Ekstrom^{a,} 📥 , 🔤 , Gary L. Soderberg^b, Robert A. Donatelli^c

Journal of Electromyography and Kinesiology

Volume 15, Issue 4, August 2005, Pages 418-428

 Highest EMG when trying to de-rotate scapula

Surface Electromyographic Analysis of Exercises for the Trapezius and Serratus **Anterior Muscles**

Richard A. Ekstrom, PT, DSc, MS, OCS¹ Robert A. Donatelli, PT, PhD, OCS² Gary L. Soderberg, PT, PhD, FAPTA³

J Orthop Sports Phys Ther 2003;

Middle Trapezius

 Shoulder horizontal extension with external rotation

140° in prone

Lower Trapezius

•Overhead arm raise at 140° in prone

Serratus Anterior

- •Exercises requiring upward rotation of the scapula
- Shoulder abduction in the plane of the scapula above 120°
- Combination of shoulder flexion, horizontal flexion, and external rotation

North American Journal of Sporits Physical Therapy : NAJSPT The Sports Physical Therapy Section of the American Physical Therapy Association

Surface Electromygraphic Analysis of the Lower Trapezius Muscle During Exercises Performed Below Ninety Degrees of Shoulder Elevation in Healthy Subjects

Robert A. McCabe, MS, PT, OCS, Karl F. Orishimo, MS, [...], and Stephen J. Nicholas, MD

- Seated press-up
- Scapular retraction
- B/L external rotation at 0° abduction
 Greatest lower-upper trapezius ratio

Rehabilitation of Scapular Muscle Balance

Which Exercises to Prescribe?

Ann M. Cools, *[†] PT, PhD, Vincent Dewitte, [†] PT, Frederick Lanszweert, [†] PT, Dries Notebaert, [†] PT, Arne Roets, [‡] MPSS, Barbara Soetens, [‡] PhD, Barbara Cagnie, [†] PT, PhD, and Erik E. Witvrouw, [†] PT, PhD

Am J Sports Med 2007 35: 1744

 Measured 3 parts trapezius and serratus with common scapular exercises looking for muscle ratios

Exercise Movement	UT	MT	LT	Reference(s)		
Abduction	x	x	x	22,35		
Forward flexion		x	x	22,34,35,39		
Dynamic hug	x			7,12,39		
External rotation			x	2		
Extension		x	x	7,22,35		
Horizontal abduction						
(neutral or						
external rotation)	x	x	x	7,22,35		
Military press	x			17,35		
Rowing (low or high)	x	x	x	17,20,35		
Scaption (neutral or						
external rotation)	x	x	x	2,12,22,35		
 Side-lying external rotation Side-lying forward flexion Prone horizontal abduction with ER Prone extension 						

Posterior shoulder tightness

- Osseous adaptation
- Posterior capsular tightnessMusculotendinous tightness
- Postural (scapular) adaptations

Quantification of Posterior Capsule Tightness and Motion Loss in Patients with Shoulder Impingement

Timothy F. Tyler,*† MS, PT, ATC, Stephen J. Nicholas,*‡§ MD, Timothy Roy,∥ PT, and Gilbert W. Gleim,* PhD

Π

Am J Sports Med 2000 28: 668

Manual therapy for posterior capsule tightness

The Effect of Cyclic Loading Simulating Oscillatory Joint Mobilization on the Posterior Capsule of the Glenohumeral Joint: A Cadaveric Study

TAKAYUKI MURAKI, PT, PhD' + NOBUYUKI YAMAMOTO, MD, PhD' + LAWRENCE J. BERGLUND, BS² + JOHN W. SPERLING, MD' + SCOTT P. STEINMANN, MD' + ROBERT H. COFIELD, MD' + KAI-NAN AN, PhD'

J Orthop Sports Phys Ther 2011;41(5):311-318

Stiffness of tissue did not decrease even after 600 cycles at 40N

Clinical application:

- You can expect non-sustained changes in capsular displacement even with 100 reps of Grade I/II type mobilizations (up to first resistance)
- You can expect immediate and sustained changes (up to 1 hour) with 20N and 40N forces (up to end resistance)
 Even at 600 oscillations at 40N, one is unlikely to incur any damage to supportive structure of the capsule

The Modified Sleeper Stretch and Modified Cross-body Stretch to Increase Shoulder Internal Rotation Range of Motion in the Overhead Throwing Athlete

KEVIN E. WILK, PT, DPT, FAPTA¹³ • TODD R. HOOKS, PT, OCS, SCS, ATC, MOMT, MTC, CSCS, FAAOMPT⁴ LEONARD C. MACRINA, MSPT, SCS, CSCS¹

J Orthop Sports Phys Ther 2013;43(12):891-894

Clinical application: Asymptomatic

- GIRD and TROM should be part of standard evaluation of throwing athlete examination
- 30 seconds stretches
- 4+ repetitions per stretch
- Performed before and after exercise program

Clinical application: Symptomatic

- 30 second stretches
- Repeated at least 8-10 times per stretch

The Immediate Effects of Muscle Energy Technique on Posterior Shoulder Tightness: A Randomized Controlled Trial

STEPHANIE D. MOORE, MS, ATC¹ • KEVIN G. LAUDNER, PhD, ATC² • TODD A. MCLODA, PhD, ATC¹ • MICHAEL A. SHAFFER, PT, ATC, OCS

J Orthop Sports Phys Ther 2011;41(6):400-407

TABLE 2	Descriptive Statistics for Glenohumeral Joint Horizontal Adduction Range of Motion*				
Group	Preintervention	Postintervention	Difference	95% Confidence Interval	Within-Group Effect Size
MET for HAbd	-100 ± 96	-32 ± 9.9	68 ± 10.5	0.4, 13.2	071
MET for ER	-135 ± 77	-8.5 ± 8.9	5.0 ± 8.7	-0.1, 10.1	0.65
Control	-78 ± 6.0	-89 ± 72	-11 ± 6.8	-5.3, 3.1	0.18
TABLE 3	Descriptive Statistics for Glenohumeral Joint Internal Rotation Range of Motion*				
Group	Preintervention	Postintervention	Difference	95% Confidence Interval	Within-Group Effect Size
MET for HAbd	43.5 ±10.1	477 ± 117	42 ± 5.3	-5.0, 11.4	0.42
MET for ER	44.5 ± 8.5	447±8.6	02 ± 6.3	-5.0, 5.4	-0.02
Control	507 ± 11.3	50.5 ± 12.1	-0.2 ± 4.0	-77, 73	0.02
*Values are mean	t ± SD degrees.		_		
		1		- Horizontal HAbd ificantly better than	control

Humeral Anterior Glide

- Humeral head anterior to acromion hood
 Normal < 1/3rd (Bryde, 04)
- •Anterior capsule laxity (Ludewig, 02)
- Stiffness (Ludewig, 02)
 Posterior capsule
 Humeral external rotators

Translations of the Humerus in Persons With Shoulder Impingement Symptoms

Paula M. Ludewig, PT, PhD¹ Thomas M. Cook, PT, PhD²

J Orthop Sports Phys Ther 2002;32:248–259.

- •Humeral translation measured during scaption
- •Compared with horizontal adduction and internal rotation ROM

Humeral Anterior Glide: Interventions

•Normalize scapula position if needed

- Improve GH rotation precision/ coordination (PICR)
- Improve rotator cuff strength and control
- Decrease Stiffness/activity
- Posterior capsule
- Biceps and pectoral muscles
- Posterior deltoid

Use of a Movement System Impairment Diagnosis for Physical Therapy in the Management of a Patient With Shoulder Pain

CHERYL CALDWELL, PT, DPT, CHT¹ • SHIRLEY SAHRMANN, PT, PhD, FAPTA² • LINDA VAN DILLEN, PT, PhD¹ Orthop Sports Phys Ther 2007;37(9):551–563.

Humeral Anterior Glide: Interventions

- Normalized rotation precision/coordination (PICR)
- •Self Corrected humeral glide with IR

 Shoulder ER with resisted ER

Humeral Internal Rotation

- Excessive humeral internal rotation at rest
- Insufficient external rotation during shoulder elevation

Humeral Internal Rotation: Associated Impairments

- Tightness in internal rotators
- Pectoralis major, Latissamus dorsi, subscapularis
- Weakness in external rotators
- Infraspinatus, Teres minor

J Orthop Sports Phys Ther 2009; 39(2):90-104

 Humeral external rotation beneficial to increase Subacromial space
 Clearance for greater tuberosity

Humeral internal rotation: Interventions

- Improve coordination
- Emphasize external rotation during shoulder movements
- Improve length/ stiffness
 Pectoralis minor/major, Latissimus dorsi, Subscapularis
- Improve strength/endurance
 Infraspinatus, Teres minor

The effects of manual treatment on rounded-shoulder posture, and associated muscle strength *

Christopher Kevin Wong, PT, PhD, OCS s,* , Denise Coleman, PT, DPT b , Vincent diPersia, PT, DPT c , Judi Song, PT, DPT d , Dennis Wright, PT, DPT, ATC/L c

"Rounded shoulders posture" remained significantly reduced 2 weeks after single treatment

Supine or back to wall shoulder abduction or flexion with external rotation

The Effect of Therapeutic Exercise and Mobilization on Patients With Shoulder Dysfunction: A Systematic Review With Meta-analysis

TRACY J. BRUDVIG, PT, DPT, PhD, OCS¹ • HETAL KULKARNI, PT, MSPT² • SHALVI SHAH, PT, MSPT³

Lab Case 1- Humeral fault

- Posture/correction: anterior glide/ internal rotation
- Active range of motion/correction
- Total range of motion assessment/GIRD assessment
- Rotation precision with correction
- Posterior capsule mobility assessment
- Horizontal adduction assessment
- Muscle length assessment: Pectoralis major/Latissimus dorsi

Lab Case 1: Interventions

Improving mobility:

- Posterior capsule mobilization
 MET Horizontal abduction
- MET Internal rotation
- Pectoralis major and latissimus dorsi stretching Modified sleeper stretch
- Modified horizontal adduction stretch

Lab Case 1: Interventions

Improving coordination:

- Humeral rotation precision (PICR)
- Wall slide (flexion with external rotation) Bilateral shoulder flexion with external rotation (supine or back against wall)
- Bilateral shoulder abduction with external rotation (supine or back against wall)

Lab Case 2- Scapular fault

- Posture/correction: insufficient upward rotation/excessive
- abduction
- Shoulder elevation/correction
- Pectoralis minor length
- Horizontal adduction assessment
- Serratus anterior strength
- Middle and lower trapezius strength
- Scapulothoracic mobility assessment

Lab Case 2: Interventions

Improving coordination:

Quadruped rock back with serratus anterior activation

Wall slide (flexion with serratus anterior activation)
Shoulder elevation with serratus anterior activation

Serratus anterior strengthening- serratus punch in scaption 120° with external rotation

- Middle trapezius- Horizontal extension with ER "T"
- Lower trapezius- Overhead arm raise at 140° in prone
- Lower trapezius isolated- bilateral shoulder ER

Lab Case 3- Thoracic fault

- Posture/correction: thoracic kyphosis
- Shoulder elevation/correction
- Thoracic spine AROM with over pressuresPassive intervertebral mobility assessment

Lab Case 3: Interventions

Improving mobility:

- Thoracic extension mobilization with movement
- Thoracic mobilization/manipulation
- Thoracic extension mobilization with shoulder elevation
 Foam roll with shoulder elevation

Taping

Lab Case 3: Interventions

Improving coordination:

- Bilateral shoulder flexion without lumbar extension (supine or back to wall)
- Quadruped rock back on forearms

Bibliography

 Picavet HS, Schouten JS, Musculoskeletal pain in the Netherlands: prevalences, consequences and risk groups, the DMC(3)-study. Pain. 2003;102:167-178.
 Pope DP, Cordt PR, Pritchard CM, Silman AJ. Prevalence of shoulder pain in the community: the influence of case definition. Ann Rheum Dis. 1997;66:308-312.
 Urwin M, Symmons D, Allison T, et al. Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different nationical sites, and the relation to social deprivation. Ann Rheum Dis. 1998;57:649-655.

van der Windt DA, Koes BW, de Jong BA, Bouter M. Shoulder disorders in general practice: incidence, patient characteristics, and management. *Ann Rheum Dis.* 1995;54:959-964.
Vecchio PC, Kavanagh RT, Hazleman BL, King RH. Community survey of shoulder disorders in the elderly to assess the natural history and effects of treatment. *Ann Rheum Dis.* 1995;54:152-154.

 Wilk KE, Macrina LC, Fleisig GS, et al. Correlation of glenohumeral internal rotation deficit and total rotational motion to shoulder injuries in professional baseball pitchers. *Am J Sports Med.* 2011;39:329-335. http://dx.doi.org/ 10.1177/0363546510384223

 Kibler WB, Kuhn JE, Wilk K, et al. The disabled throwing shoulder: spectrum of pathology—10- year update.
 Arthroscopy. 2013;29:141-161.e26. http://dx.doi.org/10.1016/ j.arthro.2012.10.009