

SCOTT EPSLEY, PT, RMSK, GRAD CERT SPORTS PHYSIO, SCS

Bio

- Owner Milton Orthopaedic & Sports Physical Therapy Milton, MA
- Past-President Imaging Special interest Group, Orthopaedic Section, APTA
- Co-Chair Hip Panel Clinical Practice Guidelines, Orthopaedic Section APTA
- Registered Musculoskeletal Ultrasound

Objectives

- Identify when USI is indicated to assist in managing common MSK conditions.
- Understand what information can be derived from USI.
- Understand the relevance of USI as compared to other imaging modalities
- Apply information presented in a laboratory setting to gain introductory experience in MSK USI.

PHYSICS & THE LANGUAGE OF ULTRASOUND

Ultrasound

- Human Hearing 20KHz/20,000Hz
- Ultrasound >20,000HZ
- Diagnostic Ultrasound 1-18MHz

Modes of Ultrasound

- B-mode: Brightness
- M-mode: Motion

Doppler

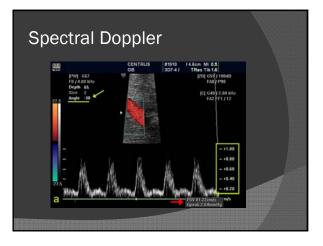
- Color Doppler
- Spectral Doppler
- Power Doppler

B Mode

 Linear array of transducers simultaneously scans a plane through the body that can be viewed as a twodimensional image on screen.

M Mode

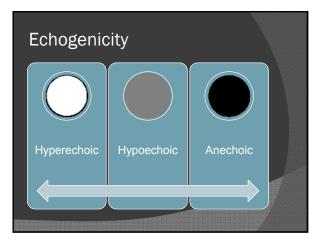
 Pulses are emitted in quick succession – each time a B-mode image is taken as the structures move relative to the probe, this can be used to determine the velocity of specific structures such as blood flow.


Color Doppler

- Velocity information is presented as a colored overlay on a B-mode image
- Detects direction
- Velocity high vs. low

Spectral Doppler

- Examines flow at one site
- Detailed analysis of distribution of flow
- Good temporal resolution can examine flow waveform
- Allows calculations of velocity and indices


Power Doppler

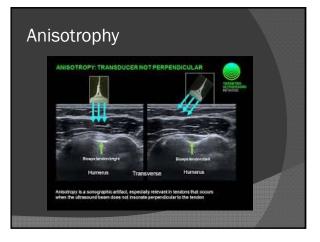
- Ideal for low flow
- Poor temporal resolution
- Susceptible to noise
- Neovascularization

Echogenicity

- Echogenicity: the amplitude / brightness of the image
- Hyperechoic: more echogenic than surrounding tissue
- Hypoechoic: less echogenic than surrounding tissue
- Isoechoic: same echogenicity as surrounding tissue
- Anechoic: absence of echoes

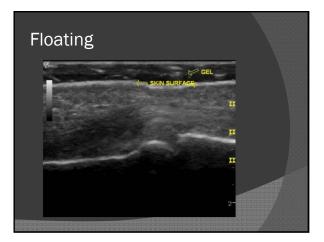
Image Balance

- Also called Optimized
- Goal: uniformity in image brightness and resolution from top to bottom


Impedance

 As sound travels through body tissue its intensity and amplitude will decrease.

			/ _
● N	laterial	Acoustic Impedanc	e (Rayls)
	air	0.0004	
	fat	1.38	
	water	1.54	
	brain	1.68	
	blood	1.61	
	kidney	1.62	
	Liver	1.65	
	muscle	1.70	
	lens of ey	e 1.84	
	skull-bon	e 7.8	


Anisotropy

- Optimal image when transducer is 90 degrees from target
- Each degree from perpendicular will cause image to drop out
- Anisotropy appears black on screen
- Toggling transducer will fill in image
- Use caution with multi-planar structures

Transducer Maneuvers

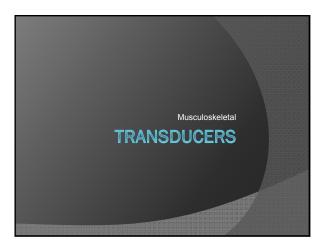
- "Floating the Transducer"
- Variable compression is key
- Necessary in looking for inflammation.
- Will not obliterate small vessels, bursae and cysts

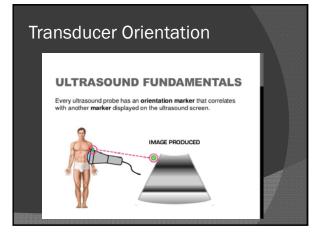
Heel - Toe

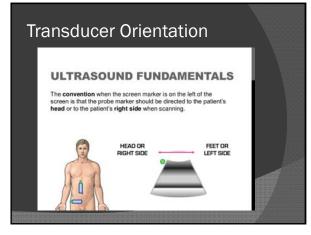
- Subtle rocking of transducer to optimize image.
- Necessary when target changes curves or changes direction to plane

WHAT IS MSK ULTRASOUND?

- MSK US high-frequency sound waves (1-17 MHz)
- Image soft tissues and bone
 Dx pathology or guiding real-time procedures
- US machines provide exquisitely detailed images, submillimeter
- Resolution >/= MRI
- tendons, nerves, ligaments, joint capsules, muscles, bone


Advantages of MSK US


- US hands-on and dynamic examination
- Information gained from the hx, PE, and available dx testing to define the clinical question.
- Sonopalpation
- US is generally unaffected by metallic artifacts
- No radiation to the patient or the user
- Comparative exams of the contralateral extremity


Disadvantages of MSK US

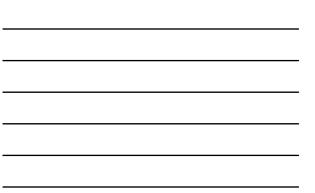
- Limited field of view
- Incomplete evaluation of bones and joints
- Limited penetration
- Operator dependent
- Lack of formal education
- Cost (?)
- Variable quality

Frequency

- Low frequency
 - Deep penetration
 - Lower resolution
- High Frequency
 - Superficial to medium penetration
 - Higher resolution
- Ultra-High Frequency
 - Very superficial penetration
 - Very high resolution

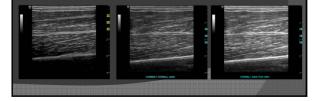
Linear

- High Frequency 7-18MHz
- Most commonly used for MSK


Curved Linear (Curvilinear)

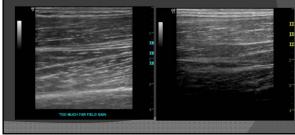
Curvilinear

- Low frequency 1-6MHz
- Deep Penetration
- Commonly used for pelvis, abdomen, hip
- Also for spine for larger field of view



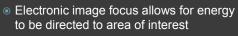
Hockey Stick

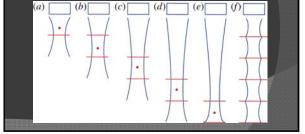
- Ultrahigh frequency 15-18MHz
- Ideal for small parts
 - Hand, foot

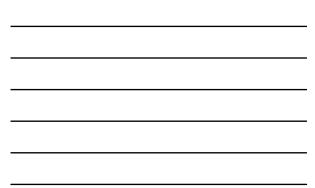

Gain

- Controls overall amplification of returning signal.
- Does not increase output power
- Think of gain control as volume control

Time Gain Compensation


- TGC : sound attenuates through tissue
- TGC is like image equalizer.




Auto

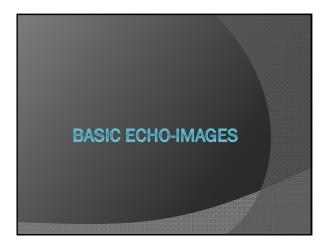
- Auto-Optimize: allows for single button optimization of B-mode and Doppler
- The Easy Button!

Focal Zone

16

Depth

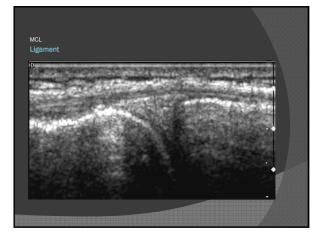
- Depth: Commonly referred to as field of view. How deep do you want to see in the image?
- Target all pertinent anatomy.
- Make image as big as possible

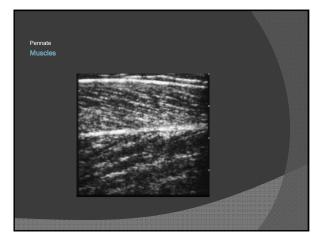


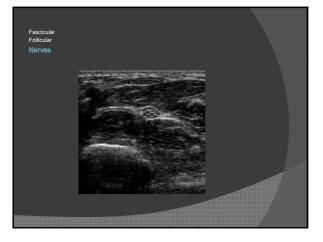
Structures

- Bone
- Tendon
- Ligament
- Muscle
- Nerve
- Ortex
- Cartilage
- Bursa
- Synovia

Axis Orientation

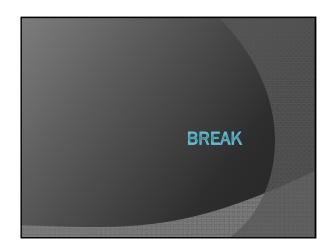

- Long axis
 - same plane as target
- Short/transverse axis
 - X-section
- "One image is no image"

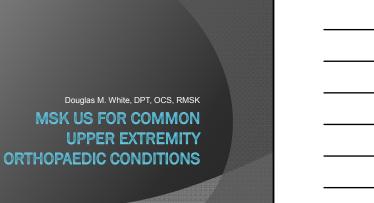


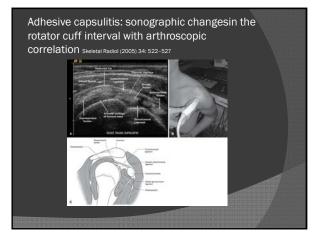




21







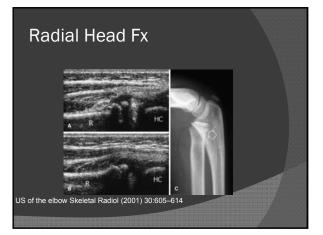
Accuracy of Ultra MRI	sound Vers	sus
Imaging Diagnosis	Ac Ultrasound	curacy (%) MRI
Detates of the sec	Ultrasound	INIKI
Rotator cuff tears		
 Full thickness 97 	96	92–
 Partial thickness 	94	92
Ankle tendon tears	94	
 Peroneal tendon 	90	
 Achilles tendon 	92	
 Tibialis posterior tendon 		96
ATF ligament tear	100	94

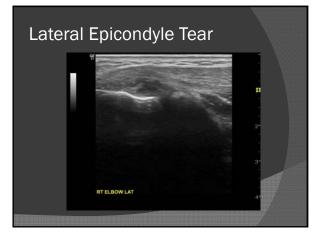
Adhesive capsulitis: sonographic changes in the rotator cuff interval with arthroscopic correlation skeletal Radiol (2005) 34: 522-527

MSK US Dx Imaging Uses

- Dx of synovial proliferation and synovitis
- Bursitis
- Bone and joint erosion
- Tendon injury
- Ligament tears
- Muscle injury (calf tear)
- Fatty Mass
- Dynamic testing

Rotator Cuff Management


- 'One-stop clinic' for the dx. & mgmt. of RC pathology: Getting the right diagnosis first time
- Mean time from GP referral to definitive management plan was 6.49 months (SD 2.74) in group 1, compared with 4.63 months (SD 1.43) in group 2 (US), overall reduction in half the number of clinic appointments


International J Clinical Pratice, Vol.62, #5, 750 - 753

Comparison of dynamic US & stress X-ray in inferior GH laxity

- Assessed 20 asymptomatic male subjects for inferior GH laxity
- Stress device to apply an inferior displacement force of 90 N
- Stress radiography and dynamic US
- Mean inferior translation
 - Stress radiography 4.7+/-4.1 mm
 Dynamic US 4.4+/-2.3 mm
- Good agreement btwn 2 methods
- Dynamic US is a valid and reproducible method for assessment and quantification of inferior GH laxity

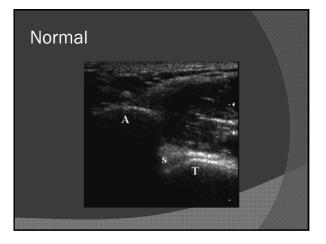
http://www.ncbi.nlm.nih.gov/pubmed/18030465

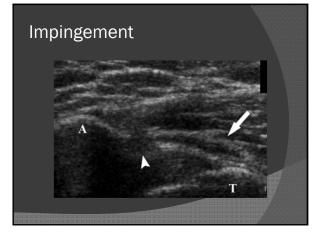
Medial Evaluation of Elbow

 Sonography view is generally Hyperechoic

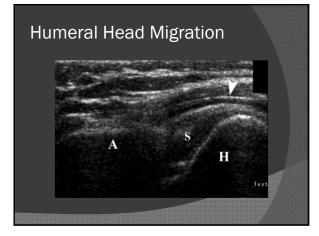
Medial Evaluation of Elbow

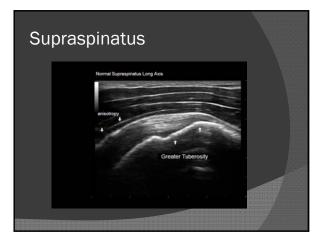
- UCL tear with valgus stress applied
- Look for the gaping of the joint




Dynamic Impingement Test

- Dynamic impingement view
 - The supraspinatus tendon and the subacromial bursa are scanned while passing beneath the acromion.


Dynamic Sonography Evaluation of Shoulder Impingement Syndrome


- Nathalie J. Bureau, Marc Beauchamp, Etienne Cardinal and Paul Brassard
- American Journal of Roentgenology 2006 187:1, 216-220

MSK US OF COMMON LE CONDITIONS

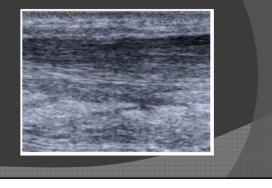
Tendonopathy

- Thickened tendon with slight inhomogeneity
- Tenocyte hyperplasia, prominent neovascularization with endothelial hyperplasia,
- Loss of longitudinal collagenous architecture, and microtears with collagen fiber separation

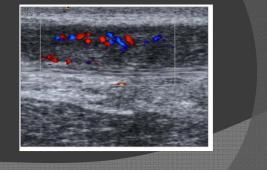
Zanetti, Radiology May 2003

Partial Achilles Tears

- Early dx can be difficult.
 - Clinical presentation unreliable,
 - imaging findings have been poorly described.
- Specific US changes correlated closely with macroscopic appearances from surgery.
 - irregularity of tendon structure on the posterior (skin) side of the tendon with disruption of the posterior tendon fibers.
 - Color Doppler examination revealed high blood flow within the region of tendon discontinuity.


Masci LA Journal of Biomedical Graphics and Computing, 2013, Vol. 3, No. 4 DOI: 10.5430/jbgc.v3n4p47 URL: http://dx.doi.org/10.5430/jbgc.v3n4p47

PROMISING RESULTS USING A SIMPLE REHABILITATION PROGRAM TO TREAT PARTIAL RUPTURES IN THE ACHILLES MID-PORTION


• Previous treatments Number of subjects

- Eccentric exercises 20
- Injections 15
- Shock wave 3
- Heel raises 2

Irregular & Disrupted Tendon.

Irregular & Disrupted Tendon High Blood Flow.

Physical Therapy

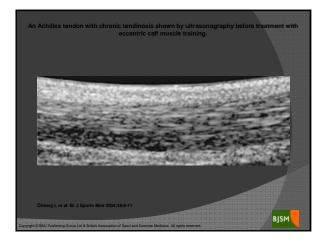
- 3-month program:
 - 0-6 weeks:
 - 2cm heel lifts
 - 7-12 weeks:
 - reduce heel lifts to 1cm
 concentric calf raises
 - 3×15 daily

Physical Therapy

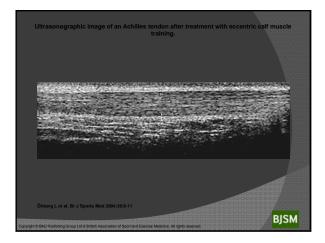
- After 3-months if pain-free
 - d/c heel lifts
 - 3×15 reps of eccentric heel drops 3 x wk
 - gradual return to previous activity.

Outcome Measures

- Pain at rest and during walking. Initially and at 3 months. (VAS)
- Patient satisfaction at 6m


Results

- 3 m f/u: reduced VAS at rest (p = 0.018) and walking (p= 0.014)
- Improvement in the US+DP findings in 25/26 patients
- 1 pt required surgery due to pain and no tendon healing on US+DP
- 6 m f/u 25/26 patients satisfied


Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at f/u

- US before and 3.8 y after 12 wk eccentric training
- 26 tendons with a mean age of 50 y
- All chronic pain Achilles tendinosis
- At f/u, 22 of 25 satisfied
- US tendon thickness decreased (p,0.005)
- Normal tendons, no difference in thickness
- All had structural abnormalities before treatment.
- After treatment, structure normal in 19 of 26 tendons.
- 6 of 7 patients remaining abnormalities pain

L O[°] hberg, R Lorentzon, H Alfredson Br J Sports Med 2004;38:8–11. doi: 10.1136/bjsm.2001.0002

Sonographically Guided PT of Achilles Tendonpathy After PRP Injection

- 37 yo chronic Achilles Tendonpathy
- Series of US guided PRP injections
- Six week course of PT progression of tendon loading aided by US
- 1 year f/u pain free and US revealed normal tendon

