

Diagnosis: What is it?

- Process and end-result of <u>evaluating</u> information obtained from the <u>examination</u>, which the clinician then organizes into defined:
 - clusters, syndromes, or categories to help determine the most appropriate intervention strategies.

Guide to Physical Therapist Practice, APTA

USC Division of Biokinesiology and Physical Therapy

COOR Lab University of Southern Californi

BIUF

What's in a study to determine the diagnostic utility of a test?

- Dx test: adequately defined & reproducible
- Patients that you would apply the test to
 - Ex: Shoulder tests → pts with shoulder pain
 - NOT: Shoulder tests → pts with knee pain
- · A blind comparison to a gold standard
 - Capsular laxity MRA, surgery for Ant Instability tests
 - ACL tear surgery, MRI for Lachman's test
- · Other key features
 - http://www.stard-statement.org/

USC Division of Biokinesiology and Physical Therapy

COOR Lab University of Southern Califo

Key Metrics for Dx Accuracy

- Diagnostic Accuracy values:
 - Sensitivity
 - Specificity
 - PPV: Predictive value of a positive test
 - NPV: Predictive value of a negative test
 - LR+: Positive likelihood ratio
 - LR- Negative likelihood ratio

USC Division of Biokinesiology and Physical Therapy

COOR Lab University of Southern Californi

Sensitivity and Specificity

- Sensitivity
 - SnNOut = When <u>Sn</u> is high, a <u>Negative test rules Out</u> the disease
- Specificity (SpPIn)
 - SpPIn = When <u>Sp</u> is high, a Positive test rules <u>In</u> the disease.
- Interpretation:
 - Indicates if a test ↓s or ↑s disease probability
 - BUT: No set cut-off to quantify shift in probability

USC Division of Biokinesiology and Physical Therapy

COOR Lab University of Southern California

NPV = proportion of patients with – test, who do not have the disease

PREVALENCE dependent!! Can be a more unstable estimate

Likelihood Ratios

- More helpful for Dx
- Indicate by how much a given diagnostic test result will \downarrow or \uparrow the probability of the disease.
- Quantify shifts in probability of the diagnosis/ disorder for an individual patient
 - Ex: +LR= 5: a patient with a + test is 5x more likely in a patient with the disease as compared to a patient without the disease
- · Minimal affect of prevalence

USCDivision of Biokinesiology and Physical Therapy

Likelihood Ratio		<u>Interpretation</u>
"+"	"_"	
>10	<0.1	Large & often conclusive changes from pre-test to post-test probability
5 – 10	0.1 – 0.2	Moderate shifts in pre-test to post-test probability
2 – 5	0.5 – 0.2	Small but sometimes important changes in probability
1 – 2	0.5 – 1	Small and rarely important changes in probability

Hawkin's Test Stabilize scapula, place arm in 90° flexion & then max IR

- (passive end ROM) · Criteria: pain / Sx at end ROM of test
- · Single test:
 - only good to R/Out
 - NOT R/In

USC Division of Biokinesiology and Physical Therapy

Neer's Test

- Stabilize scapula, elevate passively as far as possible
- Criteria: pain / Sx at end ROM of test
- · Single test:
 - only good to R/Out
 - NOT R/In

USC Division of Biokinesiology and Physical Therapy

Empty Can/Jobe

- Scapular plane elevation • Empty can: humeral IR
 - Full can: humeral ER

USC Division of Biokinesiology and Physical Therapy

Full Can

- Resist humeral elevation
- +: pain or /& weakness

External rotation resistance test (ERRT)

- Shoulder neutral, elbow flexed 90°
- Apply isometric resistance to distal forearm, while pt attempts to ER shoulder
- "+": pain OR weak
- Markedly weak: FT-RCT

USCDivision of Biokinesiology and Physical Therapy

Drop Arm Test

• "+" test: pain & difficulty lowering arm slowly

Calis M, et al. Ann Rheum Dis., 2000; Hertel, R et al, JSES, 1996. Park HB, et al; JBJS, 2005.

USC Division of Biokinesiology and Physical Therapy

Speed's Test

• Resist sh. flex w/ elbow ext & forearm supinated

+: ant/ sup shoulder pain

· NOT useful to RIn or ROut any pathology

USC Division of Biokinesiology and Physical Therapy

USC Division of Biokinesiology and Physical Therapy

Lift Off and Lag Test

- Subscapularis tear
- Hand at sacrum/LB;
- Lift-off: ask pt to lift hand away from the back
- Lag: examiner positions hand off the back and asks to hold
- "+": inability to "lift off" or "lags" back

USC Division of Biokinesiology and Physical Therapy

- Full can: humeral ER
- · Resist humeral elevation
- Positive: p! or /& weakness

External Rotation Lag Sign Hertel, R et al, JSES, 1996 At 0 deg abd, 90 deg elbow flex; passive ER & ask patient to hold "+": "lags" back to less than full ER USC Division of Biokinesiology and Physical Therapy COOR Lab Chifferilia

Glenohumeral Instability

- Degree of Instability:
 - Subluxation
 - Dislocation
- Other pathology?

Labral Tear

- Bankart: Antinf labral tear
- More types more about that later

Load and Shift

- Anterior / posterior instability and glenoid labral tears
- "Load" the humerus into the glenoid, then ant/post translate
- "+": amount of translation (3 grade system, Magee); click for labral tear

Posterior Apprehension Test

- Posterior GH instability
- Supine: stabilize the scapula; flex to 90°, horizontal add & IR, then axially load humerus post.
- "+": apprehension or pain/Sx

No Dx Accuracy evidence

Dx GH instability- Systematic Review Hegedus EJ, BMJ, 2012

Confirm GH Instability (R/In) – single tests

- 1- Apprehension +LR: 17.21
- 2- Relocation
- +LR: 5.48 3- Surprise/ Ant
- Release +LR: 5.42

NOTE: All 3 had high +LR in Meta-analysis Screen GH Instability (R/Out) – single tests

- 1- Apprehension
 - LR: 0.39
- 2- Relocation
 - LR: 0.55
- 3- Surprise/Ant. Release
 - LR: 0.25

NOTE: All 3 had low -LR in Meta-analysis

Combo of Tests: Anterior Instability

Test Combo (Farber AJ, JBJS Am, 2006)

Apprehension AND Relocation

Both+: R/In +LR: 39.68 Both -: R/Out - LR: 0.19

USC Division of Biokinesiology and Physical Therapy

GH Instability: Special Tests

- Posterior instability:
 - Load and shift
 - Posterior apprehension
- Inferior / multidirectional instability
 - Sulcus
- No Dx accuracy evidence

USC Division of Biokinesiology and Physical Therapy

Glenoid Labral Tears

- Tear of glenoid labrum
- Various lesion types
 - Bankart: ant / inf glenoid labrum
 - SLAP: sup. glenoid labral ant. to post.
 - Other: any other location
- May be associated with GH instability, SAIS, biceps tendinitis

USC Division of Biokinesiology and Physical Therapy

SLAP lesions - Types

- 4 Types defined (Snyder SJ et al, Arthroscopy, 1990)
 - Type I fraying & degeneration, no biceps involvement.
 Not considered a source of shoulder symptoms

SLAP lesions - Types

- Type II degeneration & fraying with detachment of the superior biceps- labral complex
- Type III bucket-handle tear of superior labrum with displacement of labrum, intact biceps tendon
- Type IV bucket-handle tear that involves the biceps tendon

Dx SLAP: Special Tests

Last count: 26 tests

- Anterior Slide
- Active compression
- Yeargason's
- Crank
- Clunk
- Compression-Rot.
- Biceps load I & II
- Whipple

- Pain provocation
- Dynamic Labral Shear Test (DLST)
- MODIFIED DLST
- Apprehension(huh?)
- Relocation (huh?)
- Passive distraction
- Passive compression
- And MORE.....

Dx SLAP: History

History of popping, clicking or catching <u>as a stand-</u> <u>alone finding</u> – NOT diagnostic of a SLAP lesion

(Walsworth MK, 2008; Michener LA, 2011; McFarland EJ, 2002)

USC Division of Biokinesiology and Physical Therapy

COOR Lab University of Southern Califor

Dx SLAP: Physical Exam

1- Bicipital groove tenderness – NOT diagnostic of a SLAP lesion

(Meta-analysis: Hegedus EJ, 2012)

USC Division of Biokinesiology

and Physical Therapy

Active Compression (O'Brien's)

- Horiz add to ~ 10°, max IR resist elevation; then repeat in max ER
- "+": ↑ed pain w/ hum IR & ↓ed w/ ER for labral & AC jt; pain location indicates Dx

(O'Brien SJ, et al. AJSM, 1998)

Dx: Labral Tears

- Crank Test (Meta-analysis: Hegedus EJ, 2012)
 - R/In: Sp=73%, +LR = 2.44 Likely useful
 - R/Out: Sn=57%, LR = 0.51 Likely/ Maybe

Combinations:

- Relocation + Apprehension
 - RIn (Sp=93%, +LR=5.43) (Guanche CA, 2003)
- Anterior Slide + Crank
 - RIn (Sp=91%, +LR=3.75) (Walsworth MK, 2008)
- NO Hx Pop, Click, Catch + neg Ant. Slide
 - ROut (Sn=82%, -LR=0.33) (Walsworth MK, 2008)

USC Division of Biokinesiology and Physical Therapy

University of Southern Californi

MADTIN I KELLEY DET. MICHAEL A SHAFFED MCST., IDNNE KUNN MD., IDNA A MICHENED PT DED

J Orthop Sports Phys Ther 2013;43(5):A14

- Pain may be local and/or referred (C5,6)
- Normal radiographs
- Spontaneous loss of motion
- Passive ROM loss: "global" limitation
 - 2 or more planes of > 25%; ER ≥ 50% loss
 - ► Comorbidies...IDDM?
 - ▶ S/P surgery, immobilization, or self-immob?
- ▶ Underlying cause?
 - Rotator cuff tear/SAIS, Idiopathic, Thoracic kyphosis -- change in scapula position

