

Outline

- Discuss the evidence for quadriceps activation deficits and how it contributes to poor function post-ACL injury
- Consider the evidence for OKC/NWB exercises does it work? does it increase laxity?
- Describe the procedures and utility of NMES in addressing quadriceps muscle impairments
- LAB: demonstrate and practice using NMES

Quadriceps inhibition post-ACL injury

- ACL injury results in peripheral and central NM changes
 - Spinal reflex excitability and central activation ratio of the quadriceps is decreased post injury and after ACLR Lepley et al 2015, SUMSS
 - Bilateral effect: active motor threshold is decreased post-ACLR in both limbs
 Lepley et al 2015, SJMSS; Kuenze et al 2015, JAT
 - Arthrogenic muscle inhibition (AMI) altered sensory input diminishes efferent drive and output
 Hart et al 2014, JAT
 - Pain and joint effusion contribute to AMI
 - Palmieri Smith et al 2007, AJSM; Palmieri-Smith 2013, JAT

Why might NMES work?

 Activation and force-generating capacity of the muscle contribute to volitional output Snyder-Mackler 1994, 1995
 Ideally: full activation + full capacity = max output

100% CAR * 1000N = 1000N
 Post-ACL injury or reconstruction:

80% CAR * 800N = 640N

Inhibition + full capacity = submax output
 80% CAR * 1000N = 800N
 Inhibition + low capacity = submax output

Best assessed through burst superimposition technique Snyder-Mackler et al 1995

Treatment guidelines

Options for early quadriceps strengthening

- Neuromuscular electrical stimulation (NMES)
- Extension isometrics (60 and 90 deg)
- Quad + General LE strengthening:
 - Leg press
 - Step-downs/Heel taps
 - Lunges
 - Wall squats/wall sits
- Open chain knee extension Mikkelsen 2000

\$ 2012

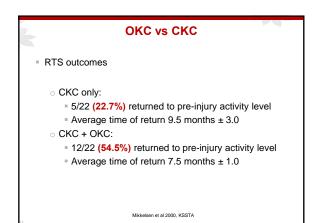
2

Mikkelsen et al 2000, KSSTA

 $_{\odot}$ Prospective, randomized, matched control study

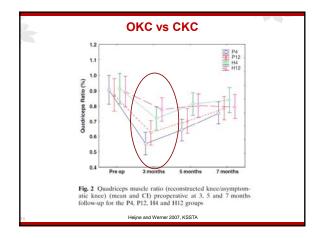
44 participants (43 athletes)

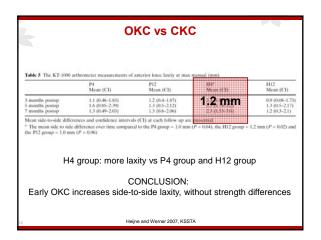
- Group 1 CKC program
 Group 2 CKC + OKC program
- $_{\odot}$ Group 2 started OKC 6 weeks post-operative


	OK	C vs C	KC	
Table a protoco structio	that was added	c open kinetic c from week 6 in ;	hain quadriceps proup 2 after AC	training I. recon-
Week	ROM (*)	Angular velo	city (*/s)	Reps
		Concentric	Eccentric	
6.	90-40	120	30	50
7	90-40	120	30	80
8	90-30	120 90	30 90	60 60
9	90-30	120 90	30 90	90 80
10	90-20	120 90 30	30 90 120	70 70 70
11	90-20	120 90 30	30 90 120	80 80 90
12	90-10	120 90 30	30 90 120	80 70 80
		240	240	70

-	CKC only		CKC = OKC		p_i
	Injured leg.	Healthy leg	Injured leg	Healthy leg	
30°/s Concentric Eccentrie 120°/s Concentric Eccentric 240°/s	134 3±35 8 144 7±39 9 102,5±27 3 146,5±36,5	174.0±44.0 220.3±58.0 141.9±34.1 210.0±50.3	129.1±42.7 157.5±53.4 130.4+32.5 155.5±52.3	163.9±49.3 189.4±55.0 138.6±36.4 195.7±56.5	<0.0) <0.00 <0.0) <0.0)
Concentric Eccentric	83 2±22 8 143 4±37.9	110.0±27.6 203.7±52.3	86:1±24:2 150:0±47:9	104.3±25.1 188.0±51.2	<0:00 <0:00

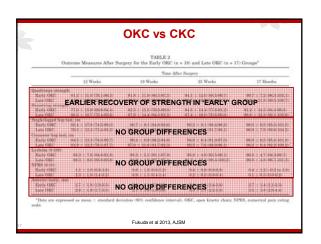
xity outcome	es			
Table 3 Mear 1000-max, pre ACL injured ar	operatively and healthy con	nd 6 months tralateral kne	postoperative e (n=22 in eac	ely in th ch group)
NC	Preop	Postop	ENCE Preop	Postop
Injured knee Healthy knee		9.1±3.2 7.4±2.1	15.6±2.9 7.8±2.4	




Heijne and Werner 2007, KSSTA

o 68 randomized (early vs late OKC) based on graft

- 'Early' OKC initiated week 4 post-op
 - Week 4 90-40 deg, no external resistance
 - Week 5 90-20 deg, unlimited resistance
 - Week 6 90-0 deg, unlimited resistance
- 'Late' OKC initiated week 12 post-op
 Week 12 90-0 deg, no external resistance
 Weeks 13+ 90-0 deg, unlimited resistance

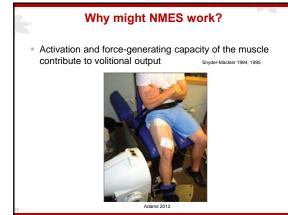

Major study limitations

- Slow recruitment: 80 patients over 6 years ('99-'05)
- 20 surgeons with 'different skills' in ACLR involved
- Conflicting documentation of rehab protocol
- o 1.2 mm difference clinically significant?
- No documentation of KT testing reliability or # of testers involved

Heijne and Werner 2007, KSSTA

Fukuda et al 2013, AJSM

- 49 patients undergoing ACLR from 2008-2011 were randomized to 'Early' vs 'Late' OKC
 - Early: week 4, 90-45 deg knee flexion
 - Late: week 12, 90-0 deg knee flexion
- Strength, laxity, pain, and PROs assessed pre- and post-ACLR:
 - = 12 weeks
 - = 19 weeks
 - = 25 weeks
 - = 17 months



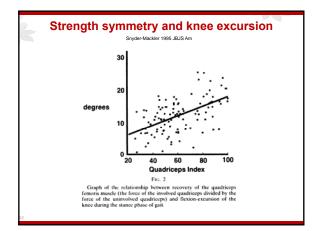
OKC vs CKC

Summary

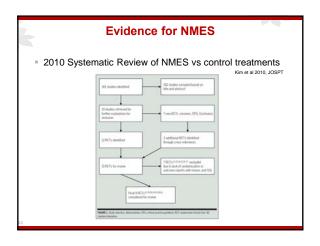
 CKC + OKC results in better strength and return to sport success without increased laxity

Mikkelsen et al 2000, KSSTA, Fukuda et al 2013, AJSM

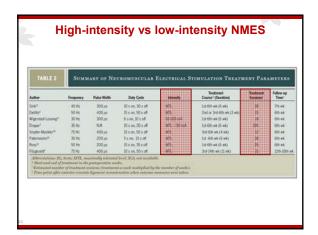
Evidence for NMES

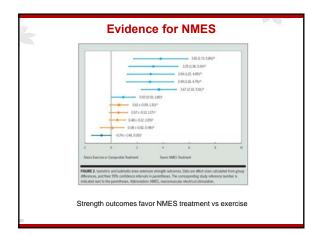

110 patients post-ACLR randomized to 4 groups

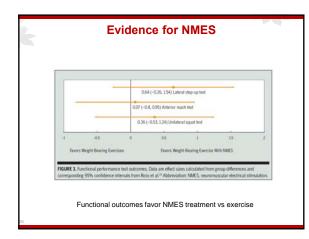
- High-intensity NMES
- Low-intensity NMES
- High- and low-intensity NMES
- High-intensity volitional exercise (including max effort isometrics)


Snyder-Mackler 1995 JBJS Am

All groups received high-intensity volitional exercise


Evidence	for NMES		
MVIC symmetry data post-treatment			
Snyder-Mackle	er 1995 JBJS Am		
Treatment Group	% of pts achieving ≥ 70% MVIC		
High-intensity NMES	70%		
Low-intensity NMES	51%		
High- and low-intensity NMES	70%		
High-intensity volitional exercise	57%		





superior to high intensity volitional exercise alone for improving quadriceps function https://wexnermedical.osu.edu/sports-medicine

Stephanie.distasi@osumc.edu @S_DiStasi

Patient education

- My 'scripts' to ensure the patient understands the intervention
- "NMES is a safe, effective way to improve your muscle function"
- "Sometimes weakness is due to poor muscle activation; NMES can address this more effectively than exercise alone"
- "The intensity of the stimulation needs to be as high as you can tolerate in order to be effective. During the treatment, we may need to increase the intensity with that goal in mind."
- "You will feel a very intense, deep muscle cramping in your thigh that will last 12-15 seconds; try to relax as best as possible through the contraction"
- "At no time should you have pain in your knee joint. If you do, tell me, and we can make some adjustments to the set-up."

NMES set-up

- Gold standard: Dynamometry

 Goal: achieve at least 50% MVIC
 Snyder-Mackler 1994, 1995
- Seated, hip @ 90 deg, knee secured @ 60 deg flexion*

 *or in painfree position between 60-90 deg
- Gait belt and towel for comfort; theraband to avoid slipping
- Ideally, trunk supported

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>